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1.1 Problem 1: Big Data

• In regional monopolies such as the electricity and water
industries customer satisfaction scores form the basis of regulatory
fines (Brint and Fry, 2021)
• The whole system is potentially unfair if there is a detectable
regional bias i.e. a regional effect over and above the actual level
of service received
• Want to try and measure regional bias using data from
TripAdvisor

• The data recorded are the hotel, the rating (out of 5, the higher
better)
• In this lecture the data are treated as if they are a continuous
(numerical) variable
- Subtle point. This may not actually be strictly correct

but makes it easier to use and interpret the model (shows
important aspects of the subject are not just purely
mathematical though are probably inherently quantitative)
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1.2 Problem 2: Big Data

• Scores take the values 1:5
- High 4-5
- Medium 3
- Low 1-2

• This lecture
• Want to investigate how the probability a survey respondent
gives a high/medium/low score depends on the region of the
survey respondent
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2.1 An (overly) simple model for regional bias

• Is there evidence for a regional bias in this data set?
• Regression model

scorei = α+ βRegioni + error

• Subtleties
- for the moment we ignore the effect of different hotels (in

practice this would be a simple mistake to make that would give
dangerously plausible suggested answers to the question at hand)

- If the β terms in the regression are significant then we have
statistical evidence of a regional effct
- The β terms help us to quantify the practical effect of any

regional bias
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2.2 Regression model fitting in R

• Think R=robot!
• Usually what you have is separate commands

1. Run the analysis (command=lm)

2. Display the results (command=summary)

• The default in R is to fit a constant term though this is not
explicit in the R syntax
• This can be surpressed using a −1 term in the sequence of
X -variables.
• Usually you include a constant term but occasionally it is easier
to present results without this (this is one of the mistakes we
perhaps made in our paper Brint and Fry, 2019 so this can be
quite subtle)
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2.3 Simplified regression treatment of Problem 1

• Data in the file ScoreData.xlsx gives the ratings of 24,365
reviewers for a range of different product (“hotels”)
• Could argue over whether this really is “Big Data” but my view
would be that this is big enough to be non-trivial and informative
• Some of the data regarding the regional affiliation of the survey
respondent is missing and data corresponding to these entries
needs to be deleted
• The easiest way of processing this data in R is

1. Copy the data into notepad

2. Read the data into R using the command read.table

3. Use the command line in R to organise the data as required
- Note that the size of the dataset means MS excel is

impractical even though the structure of the data is so
straightforward
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2.4 Reading data into R

• Easiest to save the data file directly onto a USB to make the file
path shorter
scores<-read.table(‘‘G:ScoreData.txt")

• If you were to type scores and press enter this would print the
data you have just entered in (but probably best not to do this!)
• Next you need to define the variables one by one
rating<-scores[,1]

product<-scores[,2]

region<-scores[,3]

regionmissing<-scores[,4]
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2.5 Processing the data in R

• Next need to delete entries for unassigned regions. This is
easiest to do in R using its vectorised nature and the
subsetting commands as follows:
rating<-rating[regionmissing<1]

product<-product[regionmissing<1]

region<-region[regionmissing<1]

• Need to tell R to put the data in the right form. The data
for product and region are labels rather than numerical
measurements and R needs to be told this. In R the
command to do this is factor

product<-factor(product)

region<-factor(region)
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2.6 Analysis of data in R

• As this is a non-trivial problem worthwhile to look at the
regional data to see if we might have made a mistake
• In R the command to do this is summary
summary(region)

EasMid LonEsx NE Yor NorWes Scotlan South SouWes

Wales WesMid

2781 3012 3250 3446 1984 3375 1945

1387 2301
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2.7 Regression analysis in R

• Think R=robot
• Two steps

1. Run the analysis (command=lm)

2. Display the results (command=summary)

1. Run the analysis
a.lm< −lm(rating∼region)
2. Display the results
summary(a.lm)
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2.8 Regression results in R I

Coefficients:

Estimate Std. Error t value Pr(>|t|)
(Intercept) 3.989932 0.020858 191.288 <2e-16 ∗∗∗

regionLonEsx -0.064965 0.028927 -2.246 0.0247 ∗

regionNEYor -0.026855 0.028414 -0.945 0.3446

regionNorWes 0.003394 0.028039 0.121 0.9037

regionScotlan -0.013117 0.032325 -0.406 0.6849

regionSouth 0.031994 0.028170 1.136 0.2561

regionSouWes 0.028577 0.032514 0.879 0.3794

regionWales 0.018720 0.036158 0.518 0.6047

regionWesMid 0.024845 0.030998 0.801 0.4229
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2.9 Interpreting the regression results I

• The convention would be it is the second row of this table
downwards that is interesting
• This is because we usually fit a constant or underlying average
term to the model. This means that even in the absence of a
regional difference we do not expect the average score to be equal
to zero
• Taking these results at face value there is evidence p = 0.0247
that the results for those from the London region are lower than
for the other regions
• The suggestion would be that electricity and water
companies that are based in the London region would be
systematically disadvantaged by the current system of
regulation and the way that customer satisfaction scores
determine fines.
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2.10 Re-parameterising the model

• In this case the estimated effects of the regional bias can be
better presented by re-parameterising the model.
• In order to do this we can suppress the constant term in the
fitting of the regression model. In R this is achieved by including a
-1 term into the list of X -variables
1. Run the analysis
b.lm< −lm(rating∼region-1)
2. Display the results
summary(b.lm)
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2.11 Regression results in R II

Coefficients: Estimate Std. Error t value Pr(>|t|)

regionEasMid 3.98993 0.02086 191.3 <2e-16 ***

regionLonEsx 3.92497 0.02004 195.8 <2e-16 ***

regionNEYor 3.96308 0.01929 205.4 <2e-16 ***

regionNorWes 3.99333 0.01874 213.1 <2e-16 ***

regionScotlan 3.97681 0.02469 161.0 <2e-16 ***

regionSouth 4.02193 0.01893 212.4 <2e-16 ***

regionSouWes 4.01851 0.02494 161.1 <2e-16 ***

regionWales 4.00865 0.02954 135.7 <2e-16 ***

regionWesMid 4.01478 0.02293 175.1 <2e-16 ***
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2.12 Interpreting the regression results II

• These numerical values should be the same under either
parameterisation
• You have to use the first parameterisation to test for
regional differences

- In this case the significant values indicate that the London
scores are lower than the benchmark score for the first East
Midlands category
• The second parameterisation is the easiest way to present
the estimated average score

- In this case the significant values indicate that in none of the
regions is the average rating equal to zero

- The numerical estimates obtain suggestion only minor
differences in the average scores given by customers from different
regions though this isn’t formally tested for
• The estimated customer satisfaction scores should be the
same under either parameterisation
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2.13 Different parameterisations give the same answer

• Concentrate for sake of argument on the London region
• The second parameterisation gives that in this case the average
customer satisfaction score is 3.92497
• Under the first parameterisation the average customer
satisfaction score for the London region would be given by

Average score = Intercept + London Adjustment

= 3.989932− 0.064965 = 3.924967
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3.1 Commands in R – reading in the data

• From last time

scores< −read.table("E:ScoreData.txt")
ratings< −scores[,1]
rating< −scores[,1]
product< −scores[,2]
region< −scores[,3]
regionmissing< −scores[,4]
rating< −rating[regionmissing<1]
product< −product[regionmissing<1]
region< −region[regionmissing<1]
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3.2 R subsetting commands

• In R generate the sequence of high values using
high< −1*(rating>3)

• In R generate the sequence of medium values using
medium< −1*(rating==3)
• In R generate the sequence of low values using
low< −1*(rating<2)
• In each case this generates a sequence of values that take
the value 1 if the observation belongs to that category (e.g.
high) and 0 otherwise
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3.3 Further considerations for probability models in R

• To fit a binomial glm in R you need the data organised in
columns of successes and failures
• Strictly speaking binomial models are formulated for occasions
when you have only two categories (e.g. yes/no,
successful/unsuccessful, male/female etc.)
• Our Big Data example with three categories can be modelled
using 3-1=2 equations
• A third equation can be fitted but should be redundant
• In practice it might be still worth fitting this third equation just
to check that the rest of our conclusions are still in order
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3.4 Data structure for probability models in R

• To fit a binomial glm in R you need the data organised in
columns of successes and failures
• The R command needed to do this is cbind which has the effect
of binding the required counts of successes and failures together
• For our data example in R use
yhigh< −cbind(high, 1-high)

ylow< −cbind(low, 1-low)

ymedium< −cbind(medium, 1-medium)
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3.5 Fitting binomial generalised linear models in R

• The basic set of commands works as follows
• Compute the model
high1.glm< −glm(yhigh∼region, family=binomial)

high2.glm< −glm(yhigh∼region,
family=binomial(link=probit))

• Summarise the results
summary(high1.glm)

summary(high2.glm)

• These models can serve as a cross-check of each other in
applications. Should expect to have similar models giving
you similar interpretations and numerically similar estimates
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3.6 Probability somebody gives a high score – logit model

• Probability is calculated using the R commands on the previous
slides
Estimate Std. Error z value Pr(>|z|)

(Intercept) 1.046081 0.043232 24.197 <2e-16 ***

regionLonEsx -0.114166 0.059219 -1.928 0.0539 .

regionNEYor -0.053799 0.058553 -0.919 0.3582

regionNorWes 0.002846 0.058133 0.049 0.9610

regionScotlan -0.039457 0.066637 -0.592 0.5538

regionSouth 0.075978 0.058890 1.290 0.1970

regionSouWes 0.075283 0.068138 1.105 0.2692

regionWales 0.067004 0.075778 0.884 0.3766

regionWesMid 0.018630 0.064408 0.289 0.7724

• Weak evidence (p = 0.0539) that those in the London
region may be less likely to give a high score as the
coefficient is statistically significant and negative
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3.7 Probability somebody gives a high score – probit model

• Probability is calculated using the R commands on the previous
slides
Estimate Std. Error z value Pr(>|z|)

(Intercept) 0.643412 0.025643 25.091 <2e-16 ***

regionLonEsx -0.068089 0.035304 -1.929 0.0538 .

regionNEYor -0.031994 0.034813 -0.919 0.3581

regionNorWes 0.001688 0.034477 0.049 0.9610

regionScotlan -0.023449 0.039614 -0.592 0.5539

regionSouth 0.044895 0.034808 1.290 0.1971

regionSouWes 0.044487 0.040233 1.106 0.2689

regionWales 0.039611 0.044744 0.885 0.3760

regionWesMid 0.011040 0.038165 0.289 0.7724

• Probit model leads to the same interpretation as the logit
model
• Weak evidence (p = 0.0538) that those in the London
region may be less likely to give a high score as the
coefficient is statistically significant and negative
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3.8 Numerical calculation – proof that similar models
should give similar numbers

• Example. Using the logit model calculate the probability
that somebody from the London region gives a high score

log

(
p

1− p

)
= 1.046081− 0.114166 = 0.931915

p

1− p
= exp(0.931915) = 2.539367413

p = (1− p)2.539367413

=
2.539367413

3.539367413
= 0.717463635 = 0.717 (3 d.p.)
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3.9 Numerical calculation – proof that similar models
should give similar numbers

• Example. Using the probit model calculate the probability
that somebody from the London region gives a high score

Z−1(p) = 0.643412− 0.068089

= 0.575323 = 0.58 (2 d.p.)

• Keep this calculation to 2dp because of the limited resolution of
the tables

p = Z (0.58) = 0.71904

• Results thus give very small numerical differences between
logit and probit models
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3.10 What is the probability that somebody gives a low
score?

• The basic set of commands works as follows
• Compute the model
low1.glm< −glm(ylow∼region, family=binomial)

low2.glm< −glm(ylow∼region,
family=binomial(link=probit))

• Summarise the results
summary(low1.glm)

summary(low2.glm)

• These models can serve as a cross-check of each other in
applications. Should expect to have similar models giving
you similar interpretations and numerically similar estimates
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3.11 Probability somebody gives a low score – logit model

• Probability is calculated using the R commands on the previous
slides
Estimate Std. Error z value Pr(>|z|)
(Intercept) -3.14340 0.09524 -33.005 <2e-16 ***

regionLonEsx 0.18064 0.12719 1.420 0.156

regionNEYor 0.02004 0.12919 0.155 0.877

regionNorWes -0.01845 0.12851 -0.144 0.886

regionScotlan -0.01334 0.14813 -0.090 0.928

regionSouth 0.02539 0.12796 0.198 0.843

regionSouWes 0.11757 0.14395 0.817 0.414

regionWales 0.16271 0.15733 1.034 0.301

regionWesMid -0.11741 0.14590 -0.805 0.421

• If we take this at face value no evidence (p > 0.05) for
regional differences in the extent to which people award low
scores
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3.12 Probability somebody gives a low score – probit model

• Probability is calculated using the R commands on the previous
slides
Estimate Std. Error z value Pr(>|z|)
(Intercept) -1.735207 0.042645 -40.689 <2e-16 ***

regionLonEsx 0.081926 0.057602 1.422 0.155

regionNEYor 0.008987 0.057924 0.155 0.877

regionNorWes -0.008251 0.057477 -0.144 0.886

regionScotlan -0.005966 0.066254 -0.090 0.928

regionSouth 0.011390 0.057387 0.198 0.843

regionSouWes 0.053084 0.065063 0.816 0.415

regionWales 0.073699 0.071491 1.031 0.303

regionWesMid -0.052143 0.064720 -0.806 0.420

• If we take this at face value no evidence (p > 0.05) for
regional differences in the extent to which people award low
scores
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3.13 What is the probability that somebody will sit on the
fence?!

• Classical binomial models are constructed for the special case of
two categories (yes/no, male/female, successful/unsuccessful etc.)
• In the case of three categories here (high scores, low scores,
medium scores) we have used two regression equations to
separately estimate the probability of obtaining a high score and
the probability of obtaining a low score
• Though, mathematically, this should be a redundant step it is
instructive to check this and fit the third regression equation to
explain the probability that somebody will award a medium score
• Mathematically, if you have n categories would need n − 1
probability calculations
• Mathematically, the technically correct analysis would use
multinomial regression models corresponding to multiple (> 2)
categories (not discussed here)
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3.14 Computing the probability of a medium score

• The basic set of commands works as follows
• Compute the model
medium1.glm< −glm(ylow∼region, family=binomial)

medium2.glm< −glm(ylow∼region,
family=binomial(link=probit))

• Summarise the results
summary(medium1.glm)

summary(medium2.glm)

• These models can serve as a cross-check of each other in
applications. Should expect to have similar models giving
you similar interpretations and numerically similar estimates
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3.15 Probability of a medium score – logit model

• These R commands give
Estimate Std. Error z value Pr(>|z|)

(Intercept) -1.655e+00 5.168e-02 -32.035 <2e-16 ***

regionLonEsx 3.642e-02 7.125e-02 0.511 0.609

regionNEYor -9.664e-03 7.050e-02 -0.137 0.891

regionNorWes -9.264e-02 7.048e-02 -1.314 0.189

regionScotlan 1.793e-02 7.980e-02 0.225 0.822

regionSouth -7.973e-02 7.068e-02 -1.128 0.259

regionSouWes -1.273e-01 8.272e-02 -1.539 0.124

regionWales -6.257e-02 9.089e-02 -0.688 0.491

regionWesMid -6.615e-05 7.680e-02 -0.001 0.999

• No evidence (p > 0.05) that the probability of awarding a
medium score depends on the region
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3.16 Probability of a medium score – probit model

• These R commands give
Estimate Std. Error z value Pr(>|z|)

(Intercept) -9.929e-01 2.856e-02 -34.772 <2e-16 ***

regionLonEsx 2.017e-02 3.946e-02 0.511 0.609

regionNEY or − 5.337e − 033.894e − 02− 0.1370.891
regionNorWes -5.088e-02 3.873e-02 -1.314 0.189

regionScotlan 9.917e-03 4.416e-02 0.225 0.822

regionSouth−4.383e − 023.886e − 02− 1.1280.259
regionSouWes -6.978e-02 4.524e-02 -1.542 0.123

regionWales−3.443e − 024.994e − 02− 0.6890.491
regionWesMid -3.655e-05 4.244e-02 -0.001 0.999

• Probit model leads to the same interpretation as the logit
model
• No evidence (p > 0.05) that the probability of awarding a
medium score depends on the region

Ch 10: Linear mixed and generalized linear mixed models



4. Generalized linear mixed models

• Linear mixed and generalized linear mixed models
- “Mixed” term indicates correlation problems caused by the

sampling structure
• Same basic interpretation of previous models but ...

- account for correlations caused by repeat observations and the
nature of the data collection

- should lead to more precise estimates of the regional effect
• Interpretation of the model and calculations involving the fixed
effects terms are essentially the same as before
• Section 5 below presents a professional-standard solution to
Problem 1
• Section 6 below presents a professional-standard solution to
Problem 2
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5.1 Analysis and optional packages in R

• Want to fit a linear mixed effects model in R
• To do this you have to download the R package lme4 – which
stands for linear mixed effects
• In R to upload packages use
Packages−→load packages−→lme4−→OK
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5.2 Installing non-standard packeages from CRAN

• In R to see what packages are available for loading use
Packages−→Load packages

• If the package is not there you might have to download the
required package from CRAN
• To do this use
Packages−→Install package(s) ...−→Choose a CRAN

mirror

• Better to choose the UK (London or Bristol) or wherever you are
in the world
• You should then be able to see a long list of packages that are
available for download
• This online community and long list of written packages is
really the best thing about R
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5.3 Potential problems with the university computer
network

• On my work computer standard packages load fine
• On your personal computer should be able to update the list of
packages via the R repository CRAN
• This maintenance of packages and an active online R community
is probably the best thing about R and the best reason to use it
• However, it may not be possible to update packages directly on a
PC on the university network
• The work-around this is to save the package code to a
USB stick and then use the option
Packages−→Install package(s) from local files ...

• Best thing might be to bring your laptop into class and see
if we can get R working ...
• On my laptop I found loading R packages fine but fiddlier
than it should have been ...
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5.4 Analysis of problem 1

• Analysis in R proceeds in 4 steps

1. Download the lme4 package

2. Fit a model with no regional effect but correlation caused by
repeated measures

3. Fit a model with regional effect but correlation caused by
repeated measures

4. Use a chi-squared test to test for a regional effect by
distinguishing between the models fitted in Steps 2-3
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5.5 Problem solution in R

Step 2
ab1< −lmer(rating∼1+(1|product), REML=F)

Step 3
ab2< −lmer(rating∼region+(1|product), REML=F)

Explanation of R code
• R command lmer stands for Linear Mixed Effects Regression
• As before rating is the y -variable we are trying to model.
• Model divides into a fixed effect (constant term or a term
adjusting for different regional effects) ...
• and a separate mixed effect
+(1|product)

• Need to suppress the REML estimation method in order to run a
standard maximum likelihood ratio (χ2) test
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5.6 The problem with mixed effects models

• Mixed effects problems are hard
• Problem structures may be intricate dependant upon the
complexity of the dataset and how the data has been collected
• In my simple example
+(1|product)

• This means there is an average rating associated with each
product (hotel) irrespective of who reviews it
• This is a simple illustrative example (albeit one that does stem
from a practical industrial problem)
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5.7 Properly testing for a regional effect

• R command to run a chi-squared test is anova

anova(ab1, ab2)

Data: NULL

Models:

ab1: rating ∼ 1 + (1 | product)

ab2: rating ∼ region + (1 | product)

Df AIC BIC logLik deviance Chisq Chi Df Pr(>Chisq)
ab1 3 68975 69000 -34485 68969

ab2 11 68948 69036 -34463 68926 43.825 8 6.141e-07

***

• Results give significant evidence (p = 6.141×10−7) of a
regional effect
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5.8 Presenting results in R

• Basic procedure in R works the same way

1. Run a computational calculation

2. Show the results but only if explicitly directed by the user

• Remember that R is like a robot (it will do exactly what you tell
it to do!)
• In R use the command summary to present the results
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5.9 Presenting the results in R

summary(ab2)

Fixed effects:

Estimate Std. Error t value

(Intercept) 3.965336 0.048813 81.235

regionLonEsx -0.119061 0.027666 -4.304

regionNEYor -0.003653 0.027090 -0.135

regionNorWes 0.005216 0.026742 0.195

regionScotlan 0.057297 0.030884 1.855

regionSouth -0.014028 0.026868 -0.522

regionSouWes 0.008482 0.031007 0.274

regionWales 0.014557 0.034456 0.422

regionWesMid 0.016191 0.029519 0.548
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5.10 Interpretation

• Interpretation and calculations work the same way as before
though this time the results should be more robust
• Evidence of a London effect

t = | − 4.304| = 4.304 > 2; p < 0.05

• No evidence of an effect for other regions. E.g. for Scotland

t = 1.855 < 2; p > 0.05

• London term is negative and statistically significant. Reaffirms
previous suggestion that London companies may be at a
disadvantage.
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5.11 Question: how to adjust survey scores out of 5 for
regional bias I

East Midlands = Intercept = 3.965336

London = Intercept− 0.119061

= 3.965336− 0.119061 = 3.846275

North East/Yorkshire = Intercept− 0.003653

= 3.965336− 0.003653 = 3.961683

North West = Intercept + 0.005216

= 3.965336 + 0.005216 = 3.970552

Scotland = Intercept + 0.057297

= 3.965336 + 0.057297 = 4.022633
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5.12 Question: how to adjust survey scores out of 5 for
regional bias II

South = Intercept− 0.014028

= 3.965336− 0.014028 = 3.951308

South West = Intercept + 0.008482

= 3.965336 + 0.008482 = 3.973818

Wales = Intercept + 0.14557

= 3.965336 + 0.14557 = 4.110906

West Midlands = Intercept + 0.016191

= 3.965336 + 0.016191 = 3.981527
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6.1 Analysis of problem 2 in R

• The basic R command needed is glmmPQL in the R package MASS
• Essentially what you end up with is a repetition of the logistic
regression models of the previous lecture
• There is a further adjustment to reflect the repeated
measurements from individual hotels (exactly as we did in the first
part of the lecture)
Explanation of R commands
• glmmPQL stands for Generalised Linear Mixed Models fitted via
Penalized Quasi Likelihood
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6.2 Three basic problems

1. Regional effect in the probability of giving a high score?

2. Regional effect in the probability of giving a low score?

3. Regional effect in the probability of giving a medium score?
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6.3 Testing for regional effects in the probability of giving a
high score

1. Compute the model
high2< −glmmPQL(high ∼ region, random = ∼ 1 |

product,family=binomial)

2. Show the results using the command summary

suumary(high2)
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6.4 R commands and the structure of the model

• Generalized linear mixed models are the harder version of
generalized linear models
• As such there are similarities in the statistical interpretation and
R commands of the model
random = ∼ 1 | product reflects the same correlation structure
as the linear mixed models discussed previously
family=binomial need to specify the distributional family as was
the case with logit and probit models
• Numerical examples work in the same way as logistic regression
(see below)
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6.5 Fixed effects in the probability of giving a high score

(Intercept) 1.0760804 0.09293285 23427 11.579118

0.0000

regionLonEsx -0.2214280 0.06144537 23427 -3.603656

0.0003

regionNEYor -0.0109988 0.06057182 23427 -0.181582

0.8559

regionNorWes 0.0102060 0.06014998 23427 0.169675

0.8653

regionScotlan 0.0811167 0.06892505 23427 1.176883

0.2393

regionSouth -0.0064580 0.06077871 23427 -0.106255

0.9154

regionSouWes 0.0426359 0.07024479 23427 0.606962

0.5439

regionWales 0.0589384 0.07794753 23427 0.756129

0.4496

regionWesMid 0.0020951 0.06645689 23427 0.031526

0.9749
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6.6 Interpretation

• Retain previous evidence of a London effect (p = 0.003 < 0.05)
• Coefficient of London is negative and statistically significant
• Suggests London respondents are less likely to award high marks
• No evidence for any other regional effects t < 2, p > 0.05)
• It is noteworthy that in this example both linear mixed and
generalized linear mixed models point to the same London effect
• In this case similar models should serve as a cross-check of each
other
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6.7 Numerical example I: Calculate the probability a
London respondent gives a high score

Set

ln

(
p

1− p

)
= Regression equation

= 1.0760804− 0.2214280 = 0.8546524
p

1− p
= exp(0.8546524) = 2.350557185

p =
2.350557185

3.350557185
= 0.701542177 = 0.702 (3 d.p.)
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6.8 Numerical example II: Calculate the probability a
Scotland respondent gives a high score

Set

ln

(
p

1− p

)
= Regression equation

= 1.0760804 + 0.0811167 = 1.1571971
p

1− p
= exp(1.1571971) = 3.181004731

p =
3.181004731

4.181004731
= 0.76082304 = 0.761 (3 d.p.)

• Sanity check. Calculated probability is higher for Scotland than
for London
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6.9 Testing for regional effects in the probability of giving a
low score

1. Compute the model
low2< −glmmPQL(low ∼ region, random = ∼ 1 |

product,family=binomial)

2. Show the results using the command summary

summary(low2)
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6.10 Fixed effects in the probability of giving a low score

Fixed effects: low ∼ region

Value Std.Error DF t-value p-value

(Intercept) -3.361186 0.1479072 23427 -22.724961

0.0000

regionLonEsx 0.278707 0.1263615 23427 2.205636 0.0274

regionNEYor -0.046161 0.1276307 23427 -0.361674

0.7176

regionNorWes -0.045858 0.1270027 23427 -0.361076

0.7180

regionScotlan -0.184987 0.1463020 23427 -1.264419

0.2061

regionSouth 0.145506 0.1264916 23427 1.150325 0.2500

regionSouWes 0.175125 0.1423506 23427 1.230239 0.2186

regionWales 0.196901 0.1554111 23427 1.266972 0.2052

regionWesMid -0.089078 0.1438397 23427 -0.619284

0.5357
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6.11 Interpretation

• Retain previous evidence of a London effect (p = 0.0274)
• Coefficient of London is positive and statistically significant
• Suggests London respondents are more likely to award low marks
• No evidence for any other regional effects (t < 2, p > 0.05)
• Look for similar models serving as a cross-check of each other
• Three linear mixed and generalized linear mixed models now all
point to the same London effect
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6.12 Numerical example I: Calculate the probability a
London respondent gives a low score

Set

ln

(
p

1− p

)
= Regression equation

= −3.361186 + 0.278707 = −3.082479
p

1− p
= exp(−3.082479) = 0.045845464

p =
0.045845464

1.045845464
= 0.043835792 = 0.044 (3 d.p.)
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6.13 Numerical example II: Calculate the probability a
Scotland respondent gives a low score

Set

ln

(
p

1− p

)
= Regression equation

= −3.361186− 0.184987 = −3.546173
p

1− p
= exp(−3.546173) = 0.028834779

p =
0.028834779

1.028834779
= 0.028026637 = 0.028 (3 d.p.)

• Sanity check. Calculated probability is lower for Scotland than
for London
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6.14 Final cross-check

• Recall we have 3 categories so only need 2 regression equations
to describe the system
• As a cross-check fir a generalized linear mixed model to estimate
the probability of awarding a medium score
• Technically, this should be a redundant step so no new regional
effects should be identified at this stage
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6.15 Testing for regional effects in the probability of giving
a medium score

1. Compute the model
medium2< −glmmPQL(medium ∼ region, random = ∼ 1

| product,family=binomial)

2. Show the results using the command summary

summary(medium2)
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6.16 Fixed effects in the probability of giving a medium
score

(Intercept) -1.6659027 0.07813808 23427 -21.319984

0.0000

regionLonEsx 0.1104438 0.07210366 23427 1.531737

0.1256

regionNEYor -0.0389842 0.07111155 23427 -0.548212

0.5836

regionNorWes -0.0954841 0.07111438 23427 -1.342684

0.1794

regionScotlan -0.0474800 0.08058379 23427 -0.589200

0.5557

regionSouth -0.0297179 0.07128690 23427 -0.416877

0.6768

regionSouWes -0.1083780 0.08335193 23427 -1.300246

0.1935

regionWales -0.0585106 0.09148767 23427 -0.639546

0.5225

regionWesMid 0.0069602 0.07736476 23427 0.089966

0.9283
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6.17 Interpretation

• No evidence (t < 2, p > 0.05) of a regional effect in this case
• Consistent with the previous slides we find no evidence of any
further regional effects
• Though technically a redundant step this serves as a cross-check
of our earlier results and suggests we can be more confident that
our earlier analysis is correct
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6.18 Numerical example I: Calculate the probability a
London respondent gives a medium score

Set

ln

(
p

1− p

)
= Regression equation

= −1.6659027 + 0.1104438 = −1.5554589
p

1− p
= exp(−1.5554589) = 0.21109249

p =
0.21109249

1.21109249
= 0.174299231 = 0.174 (3 d.p.)
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6.19 Numerical example II: Calculate the probability a
Scotland respondent gives a medium score

Set

ln

(
p

1− p

)
= Regression equation

= −1.6659027− 0.0474800 = −1.7133827
p

1− p
= exp(−1.7133827) = 0.180255011

p =
0.180255011

1.180255011
= 0.152725478 = 0.153 (3 d.p.)

• Sanity check. Both answers are similar reflecting no statistically
significant evidence for differences between London and Scotland
here
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