
Ch 11: Non-financial time series models

Ch 11: Non-financial time series models



Background reading

Gujarati and Porter – Chapter 22
Venables and Ripley – Chapter 14
Venables, W. N. and Ripley, B. D. (2003) Modern applied
statistics with S-Plus, 4th edition. Springer
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1.1 Purpose of time series models

• Very generally, a time series refers to a set of observations that
have been collected over time
• Time series models essentially solve two basic problems

1. Accounting for correlations in related observations that have
been collected close together in time.

2. Characterising seasonal and cyclical behaviour that may be
often be found in data sets in, for example, business
economics and in the natural sciences.

• As discussed in Venables and Ripley (2003) there is a lot of
mileage in simple graphical plots to characterise general time series
problems e.g.

- Are seasonal patterns present?
- Is the series generally increasing or decreasing over time?
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1.2 Specific purposes of time series models

1. Accounting for correlations in related observations that have
been collected close together in time.
- AR, MA, ARMA, ARIMA models
- Specialised financial time series models such as

ARCH/GARCH

2. Characterising seasonal and cyclical behaviour that may be
often be found in data sets in, for example, business
economics and in the natural sciences.
- SARIMA modelling
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1.3 Business examples

• Two obvious ways in which nonstationary time series can occur
in financial and economic time series

- Seasonality e.g. different seasons and time of the year affect
customer behaviour and consumption

- Most financial and economic time series show (exponential?)
growth trends over time
• It is prudent to take steps to try and account for these
stylised empirical facts – albeit imperfectly!
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1.4 Purpose of the lecture

• In this lecture we consider general ARIMA modelling of economic
time series
• There is an entire subject in its own right that discusses financial
time series models derived from prices on financial markets like
stock and currency markets
• Financial time series models are thus an entirely different set of
models in their own right but share foundational motivations

- e.g. ARCH models are AR models for price volatility
- e.g. GARCH models are ARMA models for price volatility
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2.1 Overview of ARIMA models

• ARIMA models provide a systematic solution to the following
problem:
How do you systematically account for correlations caused by
observations being collected close together in time e.g.
correlations in say Monday’s and Tuesday’s sales figures?
• The construction of ARIMA models has a modular structure
• In practice model selection can be performed rigorously using a
graphical approach known as the Box-Jenkins method
• in practical terms much of the R commands and model
interpretation shares much in common with standard regression
approaches
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2.2 Hierarchy of Time Series models

1. Basic models. Autoregressive (AP(p)) and Autoregressive
Moving Average (MA(q))

2. Hybrid I: ARMA Models. ARMA models=AR(p) combined
with MA(q)

3. Hybrid II: ARIMA(p, q, q) Models. Difference d times to
get an approximately stationary series and then fit an ARMA
model to the resultant series.

• ARMA(p, 0)=AR(p)
• ARMA(0, q)=MA(q)
• ARIMA(p, 0, q)=ARMA(p, q)
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2.3 Differencing

• A discussion of time series models and differencing involves some
maths and a polynomial in the differencing shift operator (1− B)d

• This terminology used can make the subject sound more difficult
than it really is
• However, the terminology is probably justified as it leads to as
systematic approach as possible which will be important for
problems of a practical size
• The main thing to remember is that as the name suggests the
effect of the backward shift operator B is to shift the series
backwards!
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2.4 Differencing and the backward shift operator

• The main thing to remember is that as the name suggests
the effect of the backward shift operator B is to shift the
series backwards!
• d = 0 gives the original series

(1− B)0Zt = Zt

• d = 1 gives the first differences:

(I − B)1Zt = (I − B)Zt = Zt − Zt−1

• d = 2 gives

(1− B)2Zt = (I − 2B + B2)Zt = Zt − 2Zt−1 + Zt−2

• Usually low values of d are sufficient. Higher values of d
begin to lose interpretability.
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2.5 Differencing in R

• In R the basic function to perform differencing is diff

diff(series, number of lags)

• The default is diff(series) will return the first differences
• This makes senses as first differences are the most commonly
encountered scenario associated with practical modelling work
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2.6 R Example I

z<-seq(1, 10)

z2<-z∧2
z2

1 4 9 16 25 36 49 64 81 100

diff(z2)

3 5 7 9 11 13 15 17 19

• Sequence above constructed as

4−1, 9−4, 16−9, 25−16, 36−25, 49−36, 64−49, 81−61, 100−81

• To give
3, 5, 7, 9, 13, 15, 17, 19
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2.7 R Example 2

• As an alternative consider
diff(z2, 2)

8 12 16 20 24 28 32 36

• Sequence above constructed by subtracting from observations
two previously:

9− 1, 16− 4, 25− 9, 36− 16, 49− 25, 64− 36, 81− 49, 100− 64

• To give
8, 12, 16, 20, 24, 28, 32, 36
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2.8 ARMA models

• ARMA(p, q) model defined by the equation

ϕα(B)Zt = ϕβ(B)ϵt

- ϵt=uncorelated White Noise sequence with E [ϵt ] = 0,
Var(ϵt) = σ2

- ϕα(B)=order p autoregressive (AR) polynomial in B

ϕ(B) = 1− α1B
1 − ...− αpB

p

- ϕβ(B)=order q Moving Average (MA) poynomial in B

θ(B) = 1− β1B
1 − ...− βpB

p
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2.9 ARIMA models

• Let ∇ = (1− B)
• Then Wt = ∇dZt = (1− B)dZt is an ARMA process satisfying
the earlier definition with Zt replaced by ∇dZt

• The original series Zt is then said to follow an ARIMA model
• The underlying maths actually being a whole lot simpler than it
might first seem. In words

- Take the dth difference
- Once you do this should end up with an ARMA model
- If d = 0 you already have an ARMA model without having to

do any additional differencing
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2.10 ARIMA models

• The ARIMA(p, d , q) model is thus defined by the equation

ϕα(B)∇dZt = ϕβ(B)ϵt

- ϵt=uncorelated White Noise sequence with E [ϵt ] = 0,
Var(ϵt) = σ2

- ϕα(B)=order p autoregressive (AR) polynomial in B

ϕ(B) = 1− α1B
1 − ...− αpB

p

- ϕβ(B)=order q Moving Average (MA) poynomial in B

ϕβ(B) = 1− β1B
1 − ...− βpB

p
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2.11 ARIMA=Autoregressive Integrated Moving Average

• The basic idea is that by taking differences an ARIMA model
reduces to a regular ARMA model
• As a result of this the name that is often used for this is an
Autoregressive Integrated Moving Average model
• By analogy with regular calculus this is assumed to be an
integrated model since you need to take differences
(“differentiate”) to get back to an ARMA model
• Maybe integrated ARMA model would be a better term but
unfortunately ARIMA is the term that is used
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2.12 Example: Differencing is not a panacea ...

• Differencing a stationary time series will produce another
stationary time series
• However it is important not to over-difference a series

- Want as faithful statistical description of data as possible
- Inappropriate differencing can lead to numerical problems with

computational software
- Standard techniques usually work best for data that is only

moderately correlated
- Numerical examples exist whereby inappropriate differencing

can be shown to lead increase correlations
- This can have particular relevance for theoretical financial

modelling as conventional models typically assume that series of
asset market returns should be uncorrelated e.g. random walk
model
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2.13 Spurious correlations added to a white noise sequence

• ϵt=uncorelated White Noise sequence with E [ϵt ] = 0,
Var(ϵt) = σ2

• Consider the first differences Wt of ϵt : Wt = ϵt − ϵt−1

Var(Wt) = Var(ϵt − ϵt−1)

= Var(ϵt) + Var(ϵt−1)− 2Cov(ϵt , ϵt−1)

= σ2 + σ2 − 0 = 2σ2

γ1 = Cov(Wt ,Wt−1) = Cov(ϵt − ϵt−1, ϵt−1 − ϵt−2)

= −Cov(ϵt−1, ϵt−1) + 0

= −Var(ϵt−1) = −σ2

Correlation(Wt ,Wt−1) =
Cov(Wt ,Wt−1)√
Var(Wt)Var(Wt−1)

=
−σ2

√
2σ2.2σ2

= −1

2
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2.14 Correlation at other lags

• In this case we can calculate Covariance(Wt ,Wt−2) as

Cov(Wt ,Wt−2) = Cov(ϵt − ϵt−1, ϵt−2 − ϵt−3)

= 0 since none of the subscripts match
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2.15 Example: model construction for ARIMA(0, 1, 1)

• ARIMA(0, 1, 1)
- p = 0 so no autoregressive bit
- d = 1 so need to take a first difference

Zt − Zt−1

- q = 1 so there is one Moving Average term in addition to the
observation error:

ϵt − β1ϵt−1

• The presence of random statistical error means an ϵt term is
always present
• The full model becomes

Zt − Zt−1 = ϵt − β1ϵt−1
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2.16 Example: forecasting for ARIMA(0, 1, 1)

• ARIMA models generalise ARMA models so that the same
general forecasting and modelling principles apply
• Consider the following model for a time series of 197 observations

Zt − Zt−1 = ϵt − β1ϵt−1

• Suppose that we have estimates β̂1 = 0.699, ϵ̂197 = −0.15 and
the last observation is z197 = 17.4
• The next three forecasts for this model are

Z198 − Z197 = ϵ198 − θ̂a197

E [Z198] = Z197 + 0− (0.699)(−0.15) = 17.505

E [Z199] = E [Z198] + E [ϵ199]− θ̂E [ϵ198] = E [Z198]

E [Z200] == E [Z199] + E [ϵ200]− θ̂E [ϵ199] = E [Z199]
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3.1 SARIMA and modelling seasonal effects

• A second problem that time series models focus upon is the
modelling of seasonal effects
• This can be achieved using SARIMA models

- Combine an ARIMA-type modelling approach discussed earlier
- Together with an explicit link to the underlying human

calendar to quantify the impact upon financial and social systems
• The original motivation behind SARIMA models was modelling
passenger demand for airlines (Venables and Ripley, 2003)

- However, SARIMA models are thought to have a particularly
broad range of application.

- See e.g. Fry et al. (2021) for an application to business-cycle
effects in corporate bank accounts
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3.2 Seasonal time series

• Seasonal effects are very important in forecasting
• Examples might include monthly ice cream sales (dependent on
the weather), intraday stock price data (dependent on the time of
day and the opening of US markets)
• If you have monthly data, as there are 12 months in a year it
would make sense to model

B12Zt = Zt−12; ∇12 = Zt − Zt−12

rather than looking at

BZt = Zt−1; ∇ = Zt − Zt−1

• When you consider models of this form...
- Need a clear link to the human calendar
- And a realistic physical mechanism e.g. seasonal effects of

temperature will obviously affect ice cream sales, heating gas
consumption etc.
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3.3 SARIMA model construction

• Start with a general ARIMA model defined in terms of the
seasonal effects:

ΦSAR(B
S)(1− BS)DZt = ΦSMA(B

S)ϵt , (1)

where the S in equation (1) refers to a seasonal term term and D
reflects the order of differencing (usually D = 0 or D = 1)
• Next apply a regular ARIMA model to the deseasonalised series
• Apply the differencing operator (I − B)d to the LHS of equation
(1)

(I − B)dΦSAR(B
S)(1− BS)DZt = ΦSMA(B

S)ϵt , (2)

Since polynomials in the backward shift operator B commute
re-write equation (2) as

ΦSAR(B
S)(I − B)d(1− BS)DZt = ΦSMA(B

S)ϵt .
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3.4 Constructing the SARIMA model

• Starting with the deseasonalised and differenced series

ΦSAR(B
S)(I − B)d(1− BS)DZt = ΦSMA(B

S)ϵt .

• Now apply an AR term to the LHS and a MA term to the RHS

ΦAR(B)ΦSAR(B
S)(I − B)d(1− BS)DZt = ΦMA(B)PhiSMA(B

S)ϵt . (3)

• Equation (3) thus defines a SARIMA (p, d , q)× (P,D,Q)S
model
• S denotes the length of the seasonal difference and the capital
letters refer to the components of the seasonal term
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3.5 Practical model construction

• Venables and Ripley (2003) give the example of an SARIMA
(0, 1, 1)× (0, 1, 1)12 model fitted to monthly series of aircraft
passenger numbers
• This has the interpretation of two moving average models one
associated with the time of the year and one that remains once
seasonal effects are adjusted for
• Using equation (3) the model can be constructed as follows
• In the absence of any autoregressive components the LHS of
equation (3) reduces to

(I − B)(I 12B )Zt = Zt − BZt − B12Zt + B13Zt

= Zt − Zt−1 − Zt−12 + Zt−13. (4)
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3.6 SARIMA model construction

• The RHS of equation (3) reduces to

(I − β1B)(I − β12B
12)ϵt = (I − β1B − β12B

12 + β1β12B
13)

= ϵt − β1ϵt−1 − β12ϵt−12 + β1β12ϵt−13

(5)

Finally, combining equations (4-5) gives

Zt = Zt−1 + Zt−12 − Zt−13 + ϵt − β1ϵt−1 − β12ϵt−12 + β1β12ϵt−13
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4.1 Example 3: ARIMA modelling

• Data in the file Airlines.txt gives data on monthly airline
passenger figures
• Simple summary plots give clear evidence of a monthly seasonal
effect
• Can get a lot of joy out of simple descriptive plots
• Suggestion is that passenger numbers are generally increasing
over time subject to significant seasonal variations
Airlines<-read.table(‘‘E:Airlines.txt")
passengers<-Airlines[,1]
ts.plot(passengers)
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4.2 Summary plot using ts.plot
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Figure: Descriptive time series plot for airline data.
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4.3 A simplified ARIMA approach

• In this section we will fit simple ARIMA models to this data
- In reality this reduces to fitting ARMA models to the

first-differenced series
- First-differencing is an artifical way of generating an

approximately stationary time series without a clear underlying
trend

- We will see later in the lecture that in this case a more
specialised SARIMA model is ultimately needed to capture
underlying seasonal effects in this data
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4.4 ARMA modelling

• We apply ARMA models applied to the first differences
constructed in R using
firstdifferences<-diff(passengers)

• We consider three simple models

1. AR(1) model

2. MA(1) model

3. ARMA(1, 1) model

• Lots of similar models should ultimately give similar
interpretations
• It is often easiest to just assume (as here) that AR and MA
effects may be present and just fit the lowest possible first-order
model
• The Box-Jenkins approach shown in Section 5 gives a principled
way of selecting the order of the models
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4.5 AR(1)/ARIMA(1, 0, 0) model

The model fitted in this case is

Zt = µ+ α1(Zt−1 − µ)

arima(firstdifferences, order = c(1, 0, 0))

Coefficients:

ar1 intercept

0.3037 2.3700

s.e. 0.0797 3.8369

• Conduct a t-test using
length(firstdifferences)

143

• Residual d.f. =143-2 estimated parameters
1-pt(0.3037/0.0797, 141)

0.0001032107

• So significant evidence of an autoregressive effect
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4.6 MA(1)/ARIMA(0, 0, 1) model

The model fitted in this case is

Zt = µ+ β1ϵt−1 + ϵt .

arima(firstdifferences, order = c(0, 0, 1))

Coefficients:

ma1 intercept

0.4012 2.4213

s.e. 0.0893 3.6858

• Conduct a t-test using
length(firstdifferences)

143

• Residual d.f. =143-2 estimated parameters
1-pt(0.4012/0.0893, 141)

7.264574e-06

• So significant evidence of a moving average effect
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4.7 ARMA(1, 1)/ARIMA(1, 0, 1) model

The model fitted in this case is

Zt = µ+ α1(Zt−1 − µ)β1ϵt−1 + ϵt .

arima(firstdifferences, order = c(1, 0, 1))

Coefficients:

ar1 ma1 intercept

-0.4767 0.8645 2.4509

s.e. 0.1153 0.0714 3.2660

• Conduct a t-test using
length(firstdifferences)

143

• Residual d.f. =143-3 estimated parameters
c(2*(1-pt(0.4767/0.1153, 140)),

2*(1-pt(0.8645/0.0714, 140)))

6.101428e-05 0.000000e+00

• So significant evidence of an autoregressive effect and a moving
average effect
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5.1 Example 2: Box-Jenkins methodology

• Model selection for time series is difficult
• Various models will perform approximately as well as each other
• Basic idea is that you can choose a model based on the ACF and
PACF though this will be a bit of an artform and may work
imperfectly with real datasets

Model Typical ACF Typical PACF

AR(p) Exponential decay Significant spikes
or damped sine through lag p
wave pattern

MA(q) Significant spikes Exponential decay or
through lag q damped sine

wave pattern

ARMA(p, q) Exponential decay Exponential decay

Table: Graphical ACF and PACF model selection procedure
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5.2 A note on the ACF and PACF

• The autocorrelation function measure correlation of Zt with itself
τ time periods later:

ρt = Corr(Xt ,Xt+τ ). (6)

• The partial autocorrelation function essentially repeats equation
(6) but makes a further adjustment for correlations in intervening
lags
• In R the relevant functions are acf and pacf

• For our example in R
acf(firstdifferences)

pacf(firstdifferences)
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5.3 ACF plot
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Figure: ACF plot for the first-differenced series.
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5.4 PACF plot
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Figure: PACF plot for the first-differenced series.
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5.5 Interpretation of the Box-Jenkins technique

• Interpret these ACF and PACF plots as follows
- ACF plot shows damped sine wave pattern with a spike at Lag

1
- PACF plot shows damped sine wave pattern with a spike at

Lag 1
- Suggestion would then be to fit at ARMA(1, 1) to the

first-differenced series
- This graphical interpretation would then tally with the

numerical results in Slide 4.7
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6.1 Example 3: SARIMA modelling

• Plotting the first differences of the data suggests that some
residual seasonality may be present
• Suggestion in this case is that more specialised SARIMA models
may ultimately be needed
• In R
firstdifferences<-diff(passengers)
ts.plot(firstdifferences)
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6.2 Summary plot using ts.plot
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Figure: Residual seasonality remaining in first-differenced series.
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6.3 Model fitting

• Venables and Ripley (2003) describe an SARIMA
(0, 1, 1)× (0, 1, 1)12 as being a classical model for airline passenger
data
• If you look at the figure on the previous slide suggestion is need
a differencing procedure to get rid of the time trend
• Simplest to include a single Moving Average term both for the
seasonal component and for the de-seasonalised series
• SARIMA models can be fitted using the function ARIMA.
• Need to specify separate ARIMA components for the seasonal
component and for the de-seasonalised series
• Need to specify the period – here 12 months in a year
• Note the summary command does not work with the arima
command in R
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6.4 SARIMA in R

arima(passengers, order=c(0, 1, 1),

seasonal=list(order=c(0, 1, 1), period=12))

Coefficients:

ma1 sma1

-0.3087 -0.1074

s.e. 0.0890 0.0828

length(passengers)

144

• Result tells there are 140 residual degrees of freedom: 144
observations -2 differencing paramters - 2 estimated parameters
c(2*(1-pt(3087/0.0890, 140)), 2*(1-pt(0.1074/0.0828,

140)))

0.0000000 0.1967298

• Results thus give significant evidence of a Moving Average effect
(p = 0.000) but no formal evidence of a monthly effect in this case
(p = 0.197)
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