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Overview I

• Subject is inherently quantitative but is a core part of finance
• The list of potential applications includes econometric studies,
options pricing, risk management etc
• Often a core part of dissertations

- Need to model percentage price changes
- Usually simplified in practice to modelling the log-returns
- Log-returns are the first differences of the log-price
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Overview II

• The modelling of price data from cryptocurrencies is a live topic
of academic research (see e.g. Katsiampa, 2017)
• Topic extends from the classical study of statistical models for
stock price data
• This is not an ideological judgement, in itself, that
cryptocurrencies are more of a speculative asset than a genuine
currency
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Which data do we model?

• We almost never model the price index directly
• Usually more informative to look at the percentage change in
price.
• Returns

Rt =
Pt+1 − Pt

Pt

• In practice it is usually easier to look at the log-returns
• Define Xt = ln Pt and analyse
• Log-returns

∆Xt = Xt+1 − Xt = ln

(
Pt+1

Pt

)
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Why percentage price-changes are usually more informative

• Some simple examples

1. “The price today is £100”
- This piece of information does not make sense in isolation
- Was the price yesterday £5 or £300?

2. “The difference between today’s price and yesterday’s
price Pt − Pt−1 is £0.1”

- This piece of information does not make sense in isolation
- Was the price yesterday £5.50 or £0.5?
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Percentage price-changes give an added sense of scale and
direction

• E.g. Rt = 0.0003 means the price has increased by 0.03%
compared to yesterday’s value
• E.g. Rt = −0.0002 means the price has decreased by 0.02%
compared to yesterday’s value
• Especially when they are calculated over short-time horizon’s like
days and weeks stock market returns tend to show quite low values
unless the market is extremely volatile
• For comparison, Black Monday October 19th 1987 would have
resulted in a value of Rt = −0.2261 as the Dow Jones Industrial
Average index lost 22.61% of its value
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Where do the log-returns come from?

• It clearly makes sense to look at returns but the usual
convention is to instead look at the series of log-returns
• There are several reasons for this

1. Tractability and consistency with standard mathematical
finance models

2. The log-returns series are typically approximately stationary
and so easier to model statistically

3. The log-returns series are typically approximately uncorrelated
and so easier to model statistically

• Note: There is usually not much difference between looking at
the returns and the log-returns
• Note: Being uncorrelated is not the same as being independent
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Log-returns consistent with standard mathematical finance
models – e.g. Black-Scholes (non-examinable)

• Black-Scholes (options pricing) model

dPt = µPtdt + σPtdWt ,

dXt =

(
µ− σ2

2

)
dt + σdWt

• The log-returns ∆Xt = Xt+1 − Xt are then independent and
normally distributed with mean∫ t+1

t

(
µ− σ2

2

)
du = µ− σ2

2

and variance ∫ t+1

t
σ2du = σ2

Ch 12: Modelling financial price data



Differences between returns and log-returns very small
(non-examinable)

• Compare the exact return rt =
Pt+1−Pt

Pt
with the log-return

∆Xt = ln
(
Pt+1

Pt

)
that is used to approximate it

ln

(
Pt+1

Pt

)
= ln

((
Pt+1 − Pt

Pt

)
+ 1

)
=

(
Pt+1 − Pt

Pt

)
+ O(r2t )

= rt + O(r2t )
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Outline of the rest of the lecture

1. Computational work with price data

2. The random walk model
- Serves as interesting historical background and

motivation

3. Stylised empirical facts
- Since stock price data is so widely studied
- A range of stylised empirical facts typically shared by

stock price data from around the world are widely documented
- Forms a natural yardstick with which to compare data

from Bitcoin and cryptocurrencies and have supervised
dissertations on this topic in the past

4. Some tests of stylized empirical facts

5. References
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1.1. Computations with cryptocurrency price data

• Usually obtain cryptocurrency data from coinmarketcap.com

• usually focus on the log-returns calculated from each day’s
closing price – so only need a subset of the available data
• Example using Bitcoin prices shown on Canvas. The raw excel
file BitcoinData.xlsx and the abridged .txt version
BitcoinData.txt

• I would recommend you read the data in from .txt format using
the command read.table

• You need to get rid of any commas in the .txt file using the
Edit−→Replace function
• If you directly copy the log-returns from e.g. MS excel into R
this can be a hidden source of rounding error
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1.2 Bitcoin example

• Read in the data using the read.table command
>BitcoinData<-read.table(‘‘E:BitcoinData.txt")

• Clarify how many columns are in the downloaded dataset.
In this case the result tells you there are four columns
>ncol(BitcoinData)

4

• The price then has to be identified as the last (fourth)
column
>price<-BitcoinData[,4]

• Need the data to be in chronological order from oldest to
newest. May have to reverse the data if it isn’t already in
this format. In R the command to do this is rev
>price<-rev(price)
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1.3 Bitcoin example (continued ...)

• R’s command line structure offers various time and efficiency
savings compared to inferior alternatives such as MS excel
• In R calculate the log-returns as the first-difference of the
log-prices
• This can be a bit hard to see at first but can be achieved by
creating two series

1. Series One with the first observation deleted

2. Series Two with the last observation deleted

• The log-return can then be calculated as

Log-return = Series One− Series Two
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1.4 Bitcoin example (continued ...)

• Calculate the log-return using

1. Series One with the first observation deleted

2. Series Two with the last observation deleted

• The log-return can then be calculated as

Log-return = Series One− Series Two

• In R use
>length(price)

2482

>logreturn<-log(price[-1])-log(price[-2482])

• In R the command length tells you how long the series is
and the number corresponding to the last observation. The
minus sign indicates that you delete the 1st and 2482nd
observations

Ch 12: Modelling financial price data



1.5 An R function to calculate the log-returns

• In financial econometric work in R I have personally found the
following function helpful to calculate log-returns based on a price
series x listed in chronological order from oldest to newest
gradrel<-function(x){
n<-length(x)

logreturns<-log(x[-1])-log(x[-n])

logreturns}
• In R you could then equivalently calculate the log-returns
as
logreturns<-gradrel(price)
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2.1 Overview of the random walk model

• The random walk model is the simplest possible financial model
that can give you “reasonable answers”
• The random walk model has links with both the Efficient
Markets Hypothesis and to Corporate Finance though it is not
always presented in this way
• Finance is inherently quantitative ...
• The random walk model is the lens through which we can see
how stock market prices really behave!
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2.2 The random walk model (non-examinable)

• Mathematically, a random walk is defined as

Sn =
n∑

i=1

Xi ,

where the Xi are independent and identically distributed (not
necessarily normally distributed!)
• Under the Black-Scholes model the log-price Xt can be
constructed as

Xt =
t∑

i=1

∆Xi ,

where the Xi are normally distributed with mean µ̃ = µ− σ2

2 and
variance σ2
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2.3 Background to the random walk model
(non-examinable)

• The random walk model has a rich history and hints at close
links between physics and finance (Weatherall, 2013)

- Originally used as an options pricing model by Bachelier
(1900)

- Predates Einstein’s work on Brownian motion by 5 years
• For various reasons there was a growth in mathematical finance
in the 1950s-1960s

- Osborne improves upon Bachelier’s original model
- Other important contributions made by Mandelbrot and Thorp
- First tests of the random walk model and the Efficient

Markets Hypothesis by Fama
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2.4 Additional historical background (non-examinable)

• 1973. Seminal options-pricing papers published by Black-Scholes
and by Merton. Chicago Board Options Exchange established.
• Early 1970s Physics research funding dramatically cut in the
aftermath of the space race. Period coincides with increased use of
quantitative computer-driven models in financial industries.
• Finance becomes increasingly quantitative – and will
probably continue to do so!
• 1980s+. Developments in time series econometrics such as
ARCH/GARCH in response to empirical failings of the random
walk model
• 1990s+. Increases in computer power and data availability occur
alongside developments in computational modelling.
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2.5 Black-Scholes model

• Under the Black-Scholes model the log-returns are normally
distributed and are independent
• Markowitz interpretation

- The mean of the log-returns provides a measure of the rate of
return on investment

- The variance of the log-returns provides a measure of the rate
of risk associated with an investment
• For the daily Bitcoin log-returns discussed earlier the mean
log-returns is 0.001716242 and the variance of the log-returns is
0.001801658
• In R use mean(logreturn) and var(logreturn) to calculate these

Ch 12: Modelling financial price data



2.6 Summarising the random walk model

• The key advantage of the random walk model is that it is
conceptually interesting and tractable – especially in regard to
devising numerical Options-Pricing models
• However, it is important not to view the random walk
model as a purely theoretical devices

- The random walk model lays the foundation of more advanced
and accurate study of financial time series via widely documented
stylised empirical facts
• The random walk model is also not restricted into having a
normal distribution.

- heavy-tailed multivariate random walk models can lead to
fruitful risk management applications including analysing
contagion.
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3.1 Stylised empirical facts – Cont and Tankov (2004) –
Chapter 7. See also Cont (2001)

• The random walk model is not just theoretically interesting
- Black-Scholes model is used as a baseline from which stylised

empirical facts are defined
• Financial time series are widely studied, are obviously
important, and the results of these studies are widely
documented

- Stylised empirical facts use historical data to describe how real
stock market prices truly behave
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3.2 Stylised empirical facts

1. Heavy tails – higher probabilities of extreme events than under
the normal distribution

2. Log-returns are approximately uncorrelated

3. Log-returns are not independent

4. Volatility clustering

5. Central Limit Theorem – returns calculated over a longer time
horizon (e.g. days, weeks, months) are closer to a normal
distribution

6. Leverage effect – volatility negatively correlated with asset
returns

7. Volume positively correlated with volatility
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3.3 Stylised empirical facts – a note of caution

• Stylised empirical facts are general rules rather than
mathematical laws of nature
• There may be exceptions to every rule
• Stylised empirical facts typically formulated for large efficient and
liquid stock markets
• May observe differences for thinly traded, less efficient and
less liquid developing and emerging markets
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3.4 Cryptocurrencies and stylised empirical facts

• We would naturally expect cryptocurrency price data to share
much in common with these generic stylised empirical facts
• However, if we compare cryptocurrencies to e.g. a developing
stock market index we might expect

- some auto-correlation in asset returns, see e.g. empirical work
in Katsiampa (2017)

- Very heavy tails as a reflection of extreme price risks. This
stylised empirical fact may be especially true for cryptocurrencies
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4.0 Tests of stylised empirical facts

• In this section we discuss graphical and numerical tests for
stylised empirical facts 1-5
• Stylised empirical facts 6-7 require separate estimates of
volatility. Whilst this is possible, e.g. from recently established
derivative markets for Bitcoin, this is more involved so we omit this
here

Ch 12: Modelling financial price data



4.1.1 Heavy tails

• In R test for the normality of a series using the command
shapiro.test

• The null hypothesis is that the data is normally distributed
• In finance rejection of the null hypothesis will usually mean that
the data has heavy tails (a higher probability of extreme events
than under the normal distribution)
• This is the conclusion from our Bitcoin example since
shapiro.test(logreturn) gives
data: logreturn

W = 0.88778, p-value < 2.2e-16
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4.1.2 Graphing heavy tails

• Want to see how the normal approximation breaks down not just
that it is an inaccurate model
• The easiest way to do this is to use a kernel density estimate
which is a special kind of histogram
• The kernel density plot gives us the best estimate of the
probability density function of the log-returns
• We can then see how the fitted normal distribution compares to
this kernel density estimate
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4.1.3 Kernel Density Estimates in R

• In R a kernel density estimate can be constructed using the
function density applied to the log-returns series:
dens<-density(logreturn)

• This produces a grid of x values over which a corresponding y
value (kernel density estimate or histogram value is calculated)
• It is easiest to compare this with the y -values that would
correspond to the normal distribution
• In order to do the comparison the R function for the normal
probability density is dnorm
• You also need

1. The mean of the log-returns series
mean(logreturn)

0.001716242

2. The standard deviation of the log-returns series
sd(logreturn)

0.04244594
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4.1.4 Graphing Probability Density Estimates

1. Plot the kernel density estimate using the x and y
co-ordinates of the kernel density estimate
plot(dens$x, dens$y, type=‘‘l")

2. Overlay a line showing the fit of the corresponding normal
distribution
lines(dens$x, dnorm(dens$x, 0.001716242, 0.04244594),
lty=2)

Note

1. Should show much heavier tails in empirical financial data
compared to the normal distribution

2. Sometimes the effect is better shown using a plot of the log
density
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4.1.5 Probability Density Plot
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4.1.6 Log (Probability Density Plot)
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4.2 Log-returns approximately uncorrelated

• If this stylised empirical fact is true then the ACF plot
constructed should have all the points within the “tramlines”
• In R use acf(logreturn)
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4.3 Log-returns are not independent

• Log-returns are not independent
• This feature is also sometimes described as long-range
dependence in volatility
• The ACF of the absolute value or modulus of the log-returns
should suggest autocorrelation. In R use acf(abs(logreturn))
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4.4.1 Volatility clustering

• We will discuss ARCH/GARCH modelling to account for
volatility clustering in the next lecture
• Whilst ARCH and GARCH models give a formal statistical test
for volatility clustering some important points to bear in mind are
as follows

- Purely graphical measures of volatility clustering are still useful
- The behaviour of price volatility will be richer (and inevitably

more dangerous) than any mathematical or statistical model can
describe
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4.4.2 Volatility clustering

• In contrast to how simulated data from the normally distributed
random walk model prices clump together around groups of large
spikes
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4.4.3 Comparison with simulated data

• Simulated data from a normal random walk model looks too
smooth compared to real price series
• This may not be easy to see. The other thing to look at would
be the scale on the y -axis
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4.4.4 R-code to test for volatility clustering

• In R the time series plot is produced using ts.plot(logreturn)

• In R to produce the simulated data plot you need to know

1. The length of the series
length(logreturn)

2481

2. The mean of the series
mean(logreturn)

0.001716242

3. The standard deviation of the series
sd(logreturn)

0.04244594

• A plot of the simulated data can then be constructed using
ts.plot(rnorm(2481, 0.001716242, 0.04244594),

ylab=‘‘simulated log return")
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4.5 Central Limit Theorem effect

• A typical finding is that as the return horizon increases prices
should become closer to a normal distribution
• Simple examples about how the effect should manifest itself
include

1. Returns calculated over a day should be closer to a normal
distribution than returns calculated every 15 minutes

2. Returns calculated over a week should be closer to a normal
distribution than returns calculated over a day

3. Returns calculated over a month should be closer to a normal
distribution than returns calculated over a week

4. Returns calculated over a year should be closer to a normal
distribution than returns calculated over a month
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