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1.1 Extra sum of squares principle

• In the last lecture we saw that R automatically produces an
F -statistic to test the overall level of fit
• In formal terms we are comparing the models
Model 0

Yi = β1 + ui

Model 1

Yi = β1 + β2X2,i + β3X3,i + . . .+ βpXp,i + ui

• The basic idea can be greatly expanded upon
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1.2 In summary

• t-test
- Test the significance of individual parameters

• F -test
- Test the joint significance of multiple parameters
- Evaluate competing models that are nested

• E.g. the overall F -test in R compares the models Model 0

Yi = β1 + ui

Model 1

Yi = β1 + β2X2,i + β3X3,i + . . .+ βpXp,i + ui
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1.3 F -test: Extra sum of squares principle

• Nested models
Model 0

Yi = β1 + β2X2,i + . . .+ βp−mXp−m,i + ui

Model 1

Yi = β1 + β2X2,i + . . .+ βp−mXp−m,i + . . .+ βpXp,i + ui

• The overall aim is to test whether the extra variation in
the data that Model 1 explains – the Extra Sum of Squares –
is statistically significant
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1.4 Extra sum of squares principle: generality of approach

• Using the extra sum of squares principle we saw that on the
previous slide comparing Model 0 and Model 1 was equivalent to
testing the m linear restrictions

βp−m+1 = βp−m+2 = . . . = βp = 0. (1)

• In terms of formal mathematics (Bingham and Fry, 2010 Ch. 6)
it is possible to show that you can use the same approach to test
more general linear constraints

- There is potentially some difficult mathematics involving
Lagrange multipliers but the underlying ideas remain relatively
simple
• Equation (1) gives the simplest linear restriction but other
hypotheses may be possible e.g.

Model 0 : Yi = β1 + β2X2,i + β2X3,i + ui

Model 1 : Yi = β1 + β2X2,i + β3X3,i + ui

• But the same basic testing procedure applies in each case!
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2.1 Setting up the F -test

• Nested models
• Model 0 has m constraints or equivalently m fewer parameters to
estimate
• Model 1 is larger and has no parameter constraints

1. Easy case

Model 0 : Yi = β1 + β2X2,i + . . .+ βp−mXp−m,i + ui

Model 1 : Yi = β1 + β2X2,i + ..+ βp−mXp−m,i + ..+ βpXp,i + ui

2. More complicated e.g.

Model 0 : Yi = β1 + β2X2,i + β2X3,i + ui

Model 1 : Yi = β1 + β2X2,i + β3X3,i + ui

• m=1 constraint
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2.2 F -statistic always has the same form

• Is the extra sum of squares or variation in the data
explained by the larger (unconstrained) model statistically
significant?
• How I remember the F -statistic

F =

Difference in residual SS
Difference in residual df

Residual SS (larger model)
Residual df (larger model)

F =
Difference in residual SS

m

Residual SS (larger model)
n−p

(2)
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2.3 Developing more applicable formulae

• As we saw in the last lecture the F -statistic can be written in
terms of the R2 statistic.
• Tells you exactly the same information as before...
• But results in formulae that are simpler and easier to apply
• F -test for the extra sum of squares principle becomes

F =
Difference in residual SS

m

Residual SS (larger model)
n−p

F =

TSS(R2
1−R2

0 )
m

TSS(1−R2
1 )

n−p

=

R2
1−R2

0
m

1−R2
1

n−p

∼Fm,n−p (3)
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2.4 Equivalent applicable formulae

• Equivalently equation (3) on Slide 2.3 can be re-written as

F =
Difference in R2

m

1−R2(larger model)
n−p

(4)

• Equations (3) and (4) are equivalent – it is up to you which
formula you remember and use in your exam...
• Will give some practical examples but first I wanted to show
where the F -test automatically reported by R comes from
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2.5 F -Rtest for overall significance revisited

Model 0

Yi = β1 + ui

Model 1

Yi = β1 + β2X2,i + β3X3,i + . . .+ βpXp,i + ui

F =
Difference in residual SS

m

Residual SS (larger model)
n−p

=

TSS(R2−0)
p−1

TSS(1−R2)
n−p

=

R2

p−1

1−R2

n−p

∼Fp−1,n−p

• Gives the same formula as given in the previous lecture but
shows that this fits into a much more general way of
thinking...

Ch 5: The extra sum of squares principle and regression modelling assumptions



3.1 Illustrative examples

• We will illustrate the F -test and the extra sum of squares
principle with two examples:

1. F -test for joint significance

2. F -test in polynomial regression
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3.2 Multiple linear regression example

• To show you how to interpret the results from a multiple linear
regression model use an example from the classical Longley dataset
• Overall aim is to explain the number of employed people in the
US in terms of

1. X2, GNP

2. X3 the number of unemployed

3. X4 the unemployment rate

4. X5 the “non-institutionalised” population over the age of 14

5. X6 the yearly trend

• Based on the results of the last lecture want to see if
BOTH X2 and X5 can be excluded from the model
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3.3 R commands for reading in the data

• Data in the file longley.txt
longley<-read.table(‘‘E:longley.txt")

x2<-longley[,1]
x3<-longley[,2]
x4<-longley[,3]
x5<-longley[,4]
x6<-longley[,5]
y<-longley[,6]
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3.4 R code

• Once the data has been entered in fit the full unconstrained
model using
a.lm<-lm(y∼x2+x3+x4+x5+x6)
• Then fit the constrained model simply by not including x2 and x5
in the above and calling it something else
b.lm<-lm(y∼x3+x4+x6)
• The F -test using the extra sum of squares principle can then be
performed using the command anova:
anova(a.lm, b.lm, test=‘‘F")
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3.5 Results in R

anova(a.lm, b.lm, test=‘‘F")

Model 1: y ∼ x2 + x3 + x4 + x5 + x6

Model 2: y ∼ x3 + x4 + x6

Res.Df RSS Df Sum of Sq F Pr(>F)
1 10 0.83935

2 12 1.32336 -2 -0.48401 2.8833 0.1026

• Since the result is non-significant p = 0.1026 > 0.05 this gives
statistical evidence that X2 and X5 can be excluded from the model
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3.6 Reconstructing the F -test by hand

• Using summary(a.lm) and summary(b.lm) tells you that in
each case the R2 values are 0.9955 and 0.9928
• Similarly the residual degrees of freedom are 10 and 12
respectively
• The F -statistic can hence be re-constructed as

F =
Difference in R2

m

1−R2(larger model)
n−p

=
0.9955−0.9928

2
1−0.9955

10

F =
0.00135

0.00045
= 3

• Note that in this case heavy rounding errors mean this deviates
substantially from the “exact” value of 2.8833 calculated by R
above. However, this is, in principle, how the F -test can be
constructed from first principles.
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3.7 Example 2: Divorces

• Data from Daily Mirror gives the percentage of divorces caused
by adultery as a function per year of marriage
• Original analysis claimed divorce-risk peaks at year 2 then
decreases thereafter. But is this conclusion misleading?
• Healthy scepticism the most important skill in the era of Big
Data?
• Wanted to test originally whether a quadratic model offers a
better fit than a straight line model to this data
• This example is also interesting as it shows that a nonlinear
model in X can still be treated as a linear regression model
because it remains linear in the regression coefficients β
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3.8 Dataset: percent of divorces caused by adultery by year
of marriage

Year 1 2 3 4 5 6 7

% 3.51 9.50 8.91 9.35 8.18 6.43 5.31

Year 8 9 10 15 20 25 30

% 5.07 3.65 3.80 2.83 1.51 1.27 0.49

Table: Data on divorces caused by adultery.
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3.9 Analysis in R

• Enter the data into R
year<-c(1, 2, 3, 4, 5, 6,7, 8, 9, 10, 15, 20, 25, 30)

percent<-c(3.51, 9.5, 8.91, 9.35, 8.18, 6.43, 5.31,

5.07, 3.65, 3.8, 2.83, 1.51, 1.27, 0.49)

• Introduce a squared term for year
yearsq<-year∧2
• Equivalent R commands
.lm for linear model
.glm for generalised linear model
• In R a generalised linear model with Normal errors is the default.
• There is some suggestion that the regression command is better
numerically and would be the best to use in practical problems
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3.10 Plotting the data

• Plotting the data in R
plot(year, percent, xlab=‘‘Year", ylab=‘‘% divorces

due to adultery")

• Suggestion that divorce rate unusually low in the first year then
decreases steadily over time?
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3.11 Analysis in R

• Fit a linear regression model
a.lm<-lm(percent∼year)
a.glm<-glm(percent∼year)
• Fit a quadratic regression model
b.lm<-lm(percent∼year+yearsq)
b.glm<-glm(percent∼year+yearsq)
summary(b.lm)
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3.12 Regression output

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 8.751048 1.258038 6.956 2.4e-05 ***

year -0.482252 0.235701 -2.046 0.0654 .

yearsq 0.006794 0.007663 0.887 0.3943

• No evidence (p = 0.3943 > 0.05) that the quadratic term is
needed in the model. Suggestion is that the original analysis
in the Daily Mirror is probably mistaken.
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3.13 Analysis in R

• Test for model improvement using an F -test. Should get
the same answer as the t-test on the previous slide.
anova(a.lm, b.lm, test="F")

anova(a.glm, b.glm, test="F")

Model 1: percent ∼ year

Model 2: percent ∼ year + yearsq

Resid. Df Resid. Dev Df Deviance F Pr(>F)

1 12 42.375

2 11 39.549 1 2.826 0.786 0.3943

• Analysis suggests the quadratic term is not needed in the
model
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3.14 Final analysis and conclusions

summary(a.glm)

Estimate Std. Error t value Pr(>|t|)

(Intercept) 7.88575 0.78667 10.024 3.49e-07 ***

year -0.27993 0.05846 -4.788 0.000442 ***

• The coefficient of year is negative and statistically significant
p = 0.000442 < 0.05. As the number of years marriage increases
the percentage of divorces caused by adultery decreases.
• Some suggestion that Daily Mirror analysis misleading? Safer to
say that the divorce rate caused by adultery generally decreases
over time but is unusually low in the first year?

Ch 5: The extra sum of squares principle and regression modelling assumptions



4.1 Regression modelling assumptions (Gujarati and
Porter, Ch. 7) – worth remembering!

• The classical linear regression model is

Yi = β1 + β2X2,i + β3X3,i + . . .+ βpXp,i + ui

Assumptions

1. The model is linear in the parameters β

2. The X variables are independent of the error term

3. The disturbance has zero mean: E [ui ] = 0

4. Homoscedasticity or constant residual variance: Var(ui ) = σ2

5. The ui are normally distributed

6. The disturbances are uncorrelated

Cor(ui , uj) = 0 (i ̸=j)

7. The number of observations is greater than the number of
parameters to be estimated: n > p
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4.2 Regression modelling assumptions: continued

8. There is no exact linear relationship between any pair of X
variables
9. No specification bias – the model is correctly specified
Note
• The above list is suggestive of wider problems with econometric
textbooks in that they are sometimes not very clear about the
modelling assumptions made and tend to emphasise applications

- May lead to significant problems when undertaking more
advanced research outside of the scope of your course
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4.3 Responses to failures in regression modelling
assumptions

1. Should be easy to see from the specification of the model

2. May be violated in some time series problems – largely outside
the scope of the course

3. The fitted residuals will automatically have a zero mean

4. Today’s lecture – see below

5. May be remedied to some extent by trying to model log y
instead of y

6. Chapter 6

7. n < p occurs in certain specialised bioinformatics problems
but this is outside the scope of your course

8. Chapter 7

9. Outside the scope of the course – but may be solved to some
extent if the models used are derived from an underlying
theory or literature review
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4.4 Heteroscedasticity

• In this lecture we will discuss heteroscedasticity
• The classical linear regression model is

Yi = β1 + β2X2,i + β3X3,i + . . .+ βpXp,i + ui

• In particular, the classical linear regression model assumes that
for each observation i :

Var(ui ) = σ2 (5)

• Equation (5) defines homoscedasticity
• If equation (5) does not apply then we have heteroscedasticity
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4.5 Overview

• The basic techniques of applied statistics are largely mechanical
in nature

- R2

- F -statistic
- t-tests

• These alone may be enough to pass an exam – particularly if
your lecturer is benevolent/not very cunning...
• It is important to realise that it is often more difficult to
use statistical methods well in applied project work. Statistics
requires critical thinking as well as mechanical calculations

- Heteroscedasticity is one very commonly encountered problem
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4.6 Consequences of heteroscedasticity

• It is important to realise that the underlying mathematics of the
classical linear regression model assumes that we have
heteroscedasticity as shown in equation (5) on Slide 4.4
• If this assumption does not hold the maths does not work!
• If we heteroscedasticity and not homoscedasticity then

- confidence intervals
- hypothesis tests
- F -tests etc all break down

• Parameter estimates obtained by OLS remain unbiased but are
no longer optimal
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4.7 Detecting heteroscedasticity

• There are formal tests
- Goldfeldt-Quant test
- White’s test for heteroscedasticity

• Often more important to just perform graphical checks –
simpler and more robust
• Can show mathematically (Bingham and Fry, Ch. 3) that if a
model is correctly specified then the residuals and the fitted values
should be independent.
• Judge heteroscedasticity by plotting residuals against fitted
values or squared residuals against fitted values

- Squared residuals may give a better indication about how the
residual variance changes
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5.1 Analysis of regression residuals in R

• In the previous lecture example we fitted the following regression
model
a.lm<-lm(realgoldprice∼realstockprice)
summary(a.lm)

• Having run these commands we can then use the named
regression model to obtain a residual series as follows
residuals<-a.lm$resid
• We can then use e.g. hist(residuals) or
ts.plot(residuals) to obtain e.g. a histogram or a time series
plot of the residuals as appropriate
• The fitted values from a regression model can similarly be
obtained using
fitted<-a.lm$fitted
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5.1 Graphical tests of residuals

• Graphical tests of residuals are less precise than some of the
mathematical techniques we have previously discussed in lectures
• There are more interesting things in life and in mathematics and
statistics but graphical tests of residuals are deceptively important
in applied project work
• Because the area is so widely studied there are a number
of commonly encountered patterns that it is often important
to look out for...
• These graphs are not necessarily very easy to interpret (this is
discussed at length in the excellent book on applied regression by
Draper and Smith). However, these graphs are easy to produce
using modern software and so are perhaps over-discussed.
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5.2 Interpretation of residual graphs

1. No systematic pattern suggesting no heteroscedasticity – this
is the ideal scenario that we want to happen as this
corresponds to the constant variance or homoscedasticity
assumption of the classical linear model

2. Funnelling out of residuals

3. Funnelling in of residuals

4. Linear – error variance proportional to Ŷi

5. Quadratic – error variance proportional to Ŷ 2
i

6. Quadratic – error variance proportional to Ŷ 2
i

• In these special cases we can transform the data to avoid
the problem of heteroscedasticity
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5.3 Approximate funnelling out of residuals

Figure:
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5.4 Approximate funnelling in of residuals

Figure:
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5.5 Problems with residuals – remedial transformations

2. Fit a model for log y or
√
y

- In general terms fitting a model for log y may often help
reduce problems with heteroscedasticity
3. Fit a model for y2

4. Fit a model for
√
y

5. Fit a model for log y
6. Fit a model for log y
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5.6 Problems with residuals – remedial transformations

• It is also possible that heteroscedasticity may also be
associated with some of the X -variables
• (Plot the residuals or squared residuals against X instead of the
fitted values in the above)
• Gujarati and Porter discuss two cases

1. The error variance is proportional to X 2
i

E [u2i ] ≈ σ2X 2
i

2. The error variance is proportional to Xi

E [u2i ] ≈ σ2Xi

• In each case divide through by the square root of the
offending X -term
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5.7 Error variance proportional to X 2
i

• Start with the model

Yi = β1 + β2X2,i + ui

• Divide through by Xi

Yi

Xi
=

β1
Xi

+ β2 +
ui
Xi

(6)

• Estimate equation (6) by the usual ordinary least squares
regression approach
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5.8 Error variance proportional to Xi

• Start with the model

Yi = β1 + β2X2,i + ui

• Divide through by
√
Xi

Yi√
Xi

=
β1√
Xi

+ β2
√
Xi +

ui√
Xi

(7)

• Estimate equation (7) by the usual ordinary least squares
regression approach
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5.9 Weighted Least Squares (non-examinable)

• In rare circumstances we may encounter heteroscedasticity and
know the exact form of the heteroscedasticity that occurs
• The only example of this I have seen is using a weighted
least squares approach to estimating a Generalised Linear
Model

- Since Generalised Linear Models can now be fitted using
specialist modern software there is no need to use an approximate
approach based on Weighted Least Squares

- So I think Weighted Least Squares has limited importance for
this course
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6.1 Numerical statistical tests of heteroscedasticity

• Whilst these exist these are usually thought to constitute rather
separate parts of econometrics rather than statistics and are not
covered further here in much detail.

1. Goldfeld-Quandt test (non-examinable)

2. White’s General Heteroscedasticity test (non-examinable)
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6.2 Goldfeld-Quandt test

• As we saw above often the heteroscedastic variance σ2
i increases

as one of the X -variables increases
• One commonly-encountered case that is useful in applications is

Var(ui ) = σ2X 2
i (8)

• Equation (8) is hypothesis tested by the Goldfeld-Quandt test:

H0 : Var(ui ) = σ2

H1 : Var(ui ) = σ2X 2
i
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6.3 Goldfeld-Quandt test (Gujarati and Porter, Ch. 11)

1. Order or rank the observations according to the values of the
Xi from smallest to largest

2. Omit the central c observations and divide the sample into
two groups of size n−c

2

3. Fit separate OLS regressions to each segment

4. Form the statistic

λ =
RSS2
df

RSS1
df

=
RSS2
RSS1

• RSS1=Residual SS for the first segment, RSS2=Residual SS
for the second segment
• Under the null hypothesis of homoscedasticity

λ =
RSS2
RSS1

∼F n−c−2p
2

, n−c−2p
2

• Pragmatic empirical experience suggests that for n = 30
take c = 4 and if n = 60 take c = 10
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