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1.1 Explaining the terminology

• The subjects of Analysis of Variance (ANOVA) and Analysis of
Covariance (ANCOVA) present early examples of when the
terminology used can be confusing and make things look harder
than they really are. Quite simply

1. ANOVA refers to situations where regression models contain
purely qualitative X variables

2. ANCOVA refers to situations where regression models contain
a combination of qualitative and quantitative X variables
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1.2 Introduction

• It is often convenient to discuss regression models where some of
the X variables are qualitative in nature
• Among the wealth of examples discussed in Gujarati and Porter
(2009) are categories such as male/female, black/white,
Catholic/non-Catholic etc.
• In this case these variables essentially codify whether the effect is
absent (X = 0) or present (X = 1)
• However, there are numerous examples where the categories
involved consist of more than two levels. Examples include seasons
of the year or regions in the UK
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1.3 Example of dummy variables

• Dummy variables often (but not always) associated with the time
of the year
• Suppose we have data on quarterly fridge sales
• A portion of this data is shown below

Fridge Sales Durable Goods Sales Q1 Q2 Q3 Q4 Quarter

1317 252.6 1 0 0 0 1

1615 272.4 0 1 0 2

1662 270.9 0 0 1 0 3

1295 273.9 0 0 0 1 4

Table: Portion of a dataset on quarterly fridge sales
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1.4 Setting up dummy variable regression problems

• Data on the previous slide hints at two possible approaches

1. Include 4-1=3 dummy variables in addition to the constant
term

2. Include one variable with all four categories listed

• Differences between the two approaches are due to the following

1. This is how the subject is often taught from first principles

2. This is the most efficient way of organising this data in R
using the command factor
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1.5 The dummy variable trap

• Suppose you follow the first approach
• If you have four different levels you would need 4− 1 = 3 dummy
variables in the regression model in addition to the constant term
• In general terms if you have m different levels you would need
m − 1 dummy variables in the regression model in addition to the
constant term
• But where do these numbers come from?
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1.6 Explanation of the dummy variable trap

• Suppose that you have a qualitative X variable that takes m
different levels (e.g. the previous example has m = 4 quarters
corresponding to the time of the year)
• Need at least m − 1 dummy variables plus the intercept term in
order to represent each of the m categories that can arise
• Now suppose that you include m dummy variables together with
the constant term
• The regression model now becomes

y = β0(1) + β1D1 + ...+ βmDm + u,

where D1,D2, ...,Dm denote dummy variables
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1.7 Where the dummy variable trap comes from

• Starting from the regression model

y = β0(1) + β1D1 + ...+ βmDm + u. (1)

• Now

1

m
D1 + ...+

1

m
Dm = 1

• This means there is an exact linear relationship between the
X -variables on the right hand side of the regression model in
equation (1)
• This contradicts the assumptions of the classical linear regression
model
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2.1 Fitting analysis of variance (ANOVA) models in R

• The data on Slide 1.3 links the sales of fridges and the sales of
durable goods to the time of year
• Ignoring, for the moment, data on the sales of durable goods
suppose you want to fit regression and analysis of variance models
to link fridge sales to the time of the year
• There are two basic ways this can be achieved

1. A regression approach using the command lm

2. An analysis of variance (ANOVA) approach using the
command aov
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2.2 Reading the data into R

• Data is in the file ancova.txt
ancova<-read.table(‘‘E:ancova.txt")
fridge<-ancova[,1]
durables<-ancova[,2]
q1<-ancova[,3]
q2<-ancova[,4]
q3<-ancova[,5]
q4<-ancova[,6]
quarter<-ancova[,7]
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2.3 Processing dummy variables in R

• Using the commands on the previous slide the variables q1, q2,

q3 and q4 take the values 0 and 1
• No further data processing is needed for these though only three
of these dummy variables can be included into the regression
model if you also include an intercept term
• In order to follow the second, more efficient, approach you need
to tell R that the variable quarter is a qualitative variable
• In R the command to do this is factor
quarter<-factor(quarter)
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2.4 Regression and ANOVA

• There are two ways of fitting regression and ANOVA models in R

1. A regression approach using the command lm

2. An analysis of variance approach using the command aov

• We show that both approaches lead to the same numerical
answers in our example
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2.5 Regression approach

• Using a dummy variable approach (and arbitrarily excluding q1)
dummy.lm<-lm(fridge∼q2+q3+q4)
summary(dummy.lm)

• Using the more advanced factor command

factor.lm<-lm(fridge∼quarter)
summary(factor.lm)

• Get the same numerical answers using both approaches
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2.6 Regression output for the dummy variable approach

Coefficients:

Estimate Std. Error t value Pr(>|t|)
(Intercept) 1222.12 59.99 20.372 < 2e-16 ***

q2 245.38 84.84 2.892 0.007320 **

q3 347.63 84.84 4.097 0.000323 ***

q4 -62.12 84.84 -0.732 0.470091
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2.7 Regression output for the factor approach

Coefficients:

Estimate Std. Error t value Pr(>|t|)
(Intercept) 1222.12 59.99 20.372 < 2e-16 ***

quarter2 245.38 84.84 2.892 0.007320 **

quarter3 347.63 84.84 4.097 0.000323 ***

quarter4 -62.12 84.84 -0.732 0.470091
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2.8 ANOVA for the same problem

• The analysis using ANOVA needs you to make use of the
command factor

• Using the R syntax in exactly the same way as before leads to
the following analysis of variance table
factor.aov<-aov(fridge∼quarter)
summary(factor.aov)

Df Sum Sq Mean Sq F value Pr(>F)
quarter 3 915636 305212 10.6 7.91e-05 ***

Residuals 28 806142 28791

• Reconstructing the above F -statistic by hand then shows you
that regression and analysis of variance lead to the same answers
despite cosmetic differences in how you interpret model results
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2.9 Reconstructing the F -statistic from scratch

• We are testing the null hypothesis that including the four levels
of the variable quarter does not improve upon the simple model
with just a constant term
• In R define the regression model with just a constant term
null.lm<-lm(fridge∼1)
• Then use the command anova to obtain the same values as
above
anova(factor.lm, null.lm)
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2.10 Hand calculation of the F -statistic

• Alternatively we can show the two models give the same answers
by repeating the earlier calculations by hand
• Using summary(factor.lm) we can see that the R2 value is
0.5318 and the residual degrees of freedom is given by n − p = 28
• The change in the degrees of freedom is 4-1=3 (equivalent to
the number of levels minus 1)
• The F -statistic can thus be constructed as

F =

∆ R2

∆ d.f.
1−R2

n−p

=
(0.5318/3)

(1− 0.5318)/28
=

0.1772667

0.01672143
= 10.60117,

giving the same answer as above subject to minor rounding error
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3.1 ANOVA models with two-qualitative variables

• In a similar way it is also possible to define ANOVA models with
two qualitative X variables
• The classical term used is two-way Analysis of Variance
• Really, these models get most interesting with the introduction
of interaction terms (as we shall see below)
• It is important to note that you are not constrained to have a
limit on the number of X variables
• Can have 3-way ANOVA, 4-way ANOVA etc. (though the 2-way
ANOVA is sufficient to illustrate the general principles)
• The only real constraint would be that high-order interaction
terms can prove rather difficult to interpret and so are not usually
included into regression models
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3.2 Two-way ANOVA example

• Adapting an example discussed in Gujarati and Porter (2009)
suppose you have the following ANOVA model to investigate
average hourly earnings in terms of gender and race:

Yi = β1 + β2D2,i + β3D3,i + ui , (2)

• D2,i is 1 if the respondent if female and 0 otherwise
• D3,i is 1 if the respondent is non-white and non-hispanic and 0
otherwise
• How would you interpret the results of this model?
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3.3 Model interpretation I

Yi = β1 + β2D2,i + β3D3,i + ui ,

• Male white/hispanic. Average hourly wage given by

β1 + β2(0) + β3(0) = β1

• Female white/hispanic. Average hourly wage given by

β1 + β2(1) + β3(0) = β1 + β2

• If β2 < 0 the suggestion would be that females are generally paid
less
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3.4 Model interpretation II

Yi = β1 + β2D2,i + β3D3,i + ui ,

• Male non-white and non-hispanic. Average hourly wage given by

β1 + β2(0) + β3(1) = β1 + β3

• Female non-white and non-hispanic. Average hourly wage given
by

β1 + β2(1) + β3(1) = β1 + β2 + β3

• Compare, for example, with the average wage of β1 for a male
who is white or hispanic
• Suggestion is that if β3 < 0 then non-white and non-hispanic
workers are generally paid less
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3.5 Two-way ANOVA in R

• There are at least two ways of fitting Two-way ANOVA models
in R

- lm for linear model
- aov for analysis of variance

• This reflects that ANOVA models can be seen as a special case
of linear regression models (Bingham and Fry, 2010)
• In both cases you need to define the X variables used as
qualitative variables or factors. For example for the above wages
example you would use
gender<-factor(gender)
race<-factor(race)
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3.6 Two-way ANOVA via the lm and aov commands

• Both approaches use the familiar two-step approach

1. A computational modelling step that generates no output

2. Use the command summary to explicitly show you the results

• For a regression approach using
lm

a.lm<-lm(wage∼gender+race)
summary(a.lm)

• For an ANOVA approach using
aov

a.aov<-aov(wage∼gender+race)
summary(a.aov)
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4.1 ANOVA models with interactions

• Higher order models are possible but as before a second-order
model is sufficient to illustrate the general principles
• In higher order models three-way interaction terms and higher
are possible
• However, in practice, you may be unlikely to see such models as
they can quickly become hard to interpret
• Recurring themes

- Models remain part of the general class of linear regression
models

- The R commands are essentially the same
- Models can, as before, be fitted either using the lm or the aov

commands
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4.2 Interaction means multiply

• Interaction terms allow us to account for multiplicative as
opposed to purely additive effects within the standard class of
general linear regression models
• It is easy to see how you can just multiply two quantitative
variables X2 and X3 to form an additional regressor X4 := X2X3

• For qualitative variables the effect of the interaction term is to
allow for more subtle effects.
• For example in the context of the gender and race example
earlier. Is the gender bias encountered more extreme for non-white
and non-hispanic women?
• Because interaction means multiply this has a direct effect
on the R commands used

1. To fit the full second-order model with interactions use X2∗X3

2. To add a specific interaction term use +X2 : X3
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4.3 A two-way ANOVA with interaction model

• Recall our previous example exploring how the hourly wage Y
depends on gender and race
• From first principles a two-way ANOVA with interactions model
can be constructed as

Yi = β1 + β2D2,i + β3D3,i + β4(D2,iD3,i ) + ui , (3)

• D2,i is 1 if the respondent if female and 0 otherwise
• D3,i is 1 if the respondent is non-white and non-hispanic and 0
otherwise
• If β4 ̸=0 then there is evidence of an interaction between gender
and race
• If β4 = 0 then equation (3) reduces to the simple two-way
ANOVA model shown in equation (2)
• Apart from the above how would you interpret the results
of this model?
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4.4 Model interpretation I

Yi = β1 + β2D2,i + β3D3,i + β4(D2,iD3,i ) + ui ,

• Male white/hispanic. Average hourly wage given by

β1 + β2(0) + β3(0) + β4(0) = β1

• Female white/hispanic. Average hourly wage given by

β1 + β2(1) + β3(0) + β4(0) = β1 + β2

• If β2 < 0 the suggestion would be that females are generally paid
less
• Get exactly the same results as last time. The only difference is
if both gender AND race effects are present.
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4.5 Model interpretation II

Yi = β1 + β2D2,i + β3D3,i + β4(D2,iD3,i ) + ui ,

• Female white/hispanic. Average hourly wage given by

β1 + β2(1) + β3(0) + β4(0) = β1 + β4

• Female non-white and non-hispanic. Average hourly wage given
by

β1 + β2(1) + β3(1) + β4(1) = β1 + β2 + β3 + β4

• If β4 < 0 the suggestion is that there is an additional racial effect
that women workers are subjected to
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4.6 Two-way ANOVA in R

• There are at least two ways of fitting Two-way ANOVA with
interaction models in R

- lm for linear model
- aov for analysis of variance

• This reflects that ANOVA models can be seen as a special case
of linear regression models (Bingham and Fry, 2010)
• In both cases you need to define the X variables used as
qualitative variables or factors. For example for the above wages
example you would use
gender<-factor(gender)
race<-factor(race)
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4.7 Two-way ANOVA via the lm and aov commands

• For a regression approach using
lm

a1.lm<-lm(wage∼gender*race)
summary(a1.lm)

Or
a2.lm<-lm(wage∼gender+race+gender:race)
summary(a2.lm)

• For an ANOVA approach using aov

a1.aov<-aov(wage∼gender*race)
summary(a1.aov)

Or
a2.aov<-aov(wage∼gender+race+gender:race)
summary(a2.aov)
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5.1 Analysis of Covariance (ANCOVA)

• Classical linear regression models include
- Regular regression. All X variables quantitative
- ANOVA. All X variables qualitative

• ANCOVA simply combines both of these cases
• ANCOVA refers to situations where regression models combine
BOTH qualitative AND quantitative X variables

Ch 8: Dummy variable regression models



5.2 Proper ANCOVA

• Easy to envisage ANCOVA in terms of combining the
mathematical and programming elements of previously defined
regression models
• The main point of ANCOVA from a teaching perspective is it
enables you to envisage regression models with different slopes and
different intercept terms to be fitted to different parts of the data
set
• These are sometimes referred to as segmented regression models
as the effect is to potentially fit different regression lines to each
segment of the data
• Consider an example with a qualitative variable Q that takes 2
levels (0 and 1) and a quantitative variable X
• Consider the regression model Y = Q ∗ X where ∗ means the
interaction term and all main effects terms are present
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5.3 ANCOVA interaction model

• The model Y = Q ∗ X leads to the regression model

Y = β1 + β2DQ + β3X + β4DQX + u

• If Q = 0

Y = β1 + β3X + u

• If Q = 1 the result is a model with different intercepts and
different slopes

Y = (β1 + β2) + (β3X + β4)X + u

• If Q = 1 and β4 = 0 the result is a model with a different
intercept but the same slope term

Y = (β1 + β2) + β4X + u
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5.4 An ANCOVA example

• Consider again the data shown in Slide 1.3 linking fridge sales
(F ) to durable goods expenditure (D)
• It is natural to fit a regression model of the form

F = β1 + β2D + u. (4)

• However, suppose we want to fit a regression model of the form
shown in equation (4) in such a way as the values of β1 and β2 can
potentially change depending on the time of the year
• The effect can be achieved by fitting a regression model of the
form Y = Quarter ∗ D where Quarter is a categorical variable
describing the time of the year
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5.5 Entering the data into R

ancova<-read.table(‘‘E:ancova.txt")
fridge<-ancova[,1]
durables<-ancova[,2]
q1<-ancova[,3]
q2<-ancova[,4]
q3<-ancova[,5]
q4<-ancova[,6]
quarter<-ancova[,7]
• Then need to tell R that quarter is a factor variable
quarter<-factor(quarter)
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5.6 Analysis of ANCOVA example I

• First fit the model with all interaction terms and compare with
the simpler model with just the main effects terms present
• The non-signficant result shows that the simpler model without
the interaction terms should suffice
ancova.lm<-lm(fridge∼quarter*durables)
main.lm<-lm(fridge∼durables+quarter)
anova(ancova.lm, main.lm)

Analysis of Variance Table

Res.Df RSS Df Sum of Sq F Pr(>F)
1 24 430992

2 27 465085 -3 -34093 0.6328 0.601

Ch 8: Dummy variable regression models



5.7 Analysis of ANCOVA example II

• Next fit the simpler model still with no quarterly term in it
• The significant results shows that the more complex model with
the quarterly terms in it is required
simple.lm<-lm(fridge∼durables)
anova(main.lm, simple.lm)

Analysis of Variance Table

Res.Df RSS Df Sum of Sq F Pr(>F)
1 27 465085

2 30 1377145 -3 -912060 17.65 1.523e-06 ***
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5.8 Regression output for the final model

Coefficients:

Estimate Std. Error t value Pr(>|t|)
(Intercept) 456.2440 178.2652 2.559 0.016404 *

durables 2.7734 0.6233 4.450 0.000134 ***

quarter2 242.4976 65.6259 3.695 0.000986 ***

quarter3 325.2643 65.8148 4.942 3.56e-05 ***

quarter4 -86.0804 65.8432 -1.307 0.202116
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5.9 A first segmented linear regression model

• Results on the previous slide suggest a model with different
intercepts but the same slope term is appropriate
• In Quarter 1 the appropriate regression line is

F = 456.2440 + 2.7734D

• In Quarter 2 the appropriate regression line is

F = 456.2440 + 242.4976 + 2.7734D = 698.7416 + 2.7734D

• In Quarter 3 the appropriate regression line is

F = 456.2440 + 325.2643 + 2.7734D = 781.5083 + 2.7734D

• In Quarter 4 the appropriate regression line is

F = 456.2440− 86.0804 + 2.7734D = 370.1636 + 2.7734D
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6.1 Summary

• Dummy variable regression models occur when the dependent Y
remains a quantitative measurement but some of the X variables
are qualitative and denote membership categories rather than
numerical measurements
• Some of the terminology can be confusing but essentially

- ANOVA all the X variables are qualitative
- ANCOVA all the X variables are a mixture of qualitative and

quantitative
- Essentially the same regression theory and programming

applies in each case
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6.2 Additional overview: the factor command

• Often econometric textbooks give explicit examples of
dummy-variable construction (see e.g. Gujarati and Porter, 2009)
• However, this approach is best suited for teaching purposes and
not really best suited for analysing real datasets
• Care has to be taken to avoid the dummy variable trap. A
variable with m categories needs m − 1 dummy variables
associated to it if an intercept term is also fitted
• In R qualitative variables can automatically be incorporated using
the command factor

• In this case interpretation of the regression output etc. is the
same but without the hassle of defining dummy variables
• Use of the R command factor is also useful to demonstrate the
importance of abstract thinking in cases when the size of the
dataset may make it inconvenient to look a spreadsheet of the
entire data
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