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1.1 Summary of the last lecture

• Discussed dummy variable regression models
• In this case the Y -variable remains a continuous measurement
but you may have qualitative or categorical X -variables
• In this lecture we discuss regression models where the Y -variable
is categorical (often best interpreted as a probability of being in
one of two categories)
• Examples might include (yes/no, present/absent, Islamic bank/
non-Islamic bank, high score/not a high score etc.)
• These probability models are inherently more complicated
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1.2 Statistical overview

• Classical regression models are great but run into problems very
quickly

- e.g. simple surveys can generate surprisingly complex data
• This complicated data necessitates more complicated statistical
models – generalized linear models
• I studied generalized linear models during my BSc and MSc.
However, it is possible to do an entire statistics degree without
covering generalized linear models.
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1.3 Where the subject goes ...

• Have written a textbook chapter on Generalized Linear Models
(Bingham and Fry, 2010)
• I have used Generalized Linear Models to ...

- Model complicated survey data
- Model customer satisfaction data in an industrial problem (see

Chapter 10)
- To model the effect of the academic journal on the perceived

quality of published research papers (serious practical problem in
academia)
• Past dissertation students of mine of also successfully used
related models
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2.1 Regressing or estimating probabilities

• Basic problem is to calculate the probability of being in
certain categories and how this depends on the X -variables
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2.2 Qualitative dependent variable models

• Qualitative dependent variable models are regression models in
which the Y -variable can be categorised as e.g. yes/no,
present/absent etc.
• Some of the terminology used can be confusing. In my experience
the terms successes and failures are often used in R and R coding
• In economics and finance these models are often known as
dichotomous/dummy variable regression models. I think the term
probability regression model gives a clearer idea of what you are
trying to do
• Illustrative industrial example: How does the probability that an
airplane component fails depend on the applied load?
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2.3 How does the probability of component failure depend
on the applied load?

Load Tested Failures

2500 50 10
2700 70 17
2900 100 30
3100 60 21
3300 40 18
3500 85 43
3700 90 54
3900 50 33
4100 80 60
4300 65 51
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2.4 R code to read in the data

load<-c(2500, 2700, 2900, 3100, 3300, 3500, 3700,

3900, 4100, 4300)

tested<-c(50, 70, 100, 60, 40, 85, 90, 50, 80, 65)

failures<-c(10, 17, 30, 21, 18, 43, 54, 33, 60, 51)

• Calculate the proportion of successful components
probsuccess<-1-failures/tested

• Extra code needed for fitting logit and probit models
• Need a column of successes and failures listed side by side.
successes<-tested-failures
fasteners<-cbind(successes, failures)
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3.1 Linear probability model

• Consider the following simple model

Probability of success = β1 + β2Load + ui , (1)

where the ui in equation (1) is a normally distributed error term
• This model is known as the linear probability model for two
reasons

1. It is understood that the left hand side of the equation refers
to a probability

2. The model is just a linear regression model that we have seen
in previous lectures
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3.2 Interpreting the model

Probability of success = β1 + β2Load + ui

• It is natural to expect that the component is more likely to fail
as the load applies increases
• Equivalently we might anticipate that the success probability is
likely to decrease as the load applied increases
• This means it is natural to anticipate finding β2 < 0 in the above
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3.3 The linear probability model

• The fitted value of the regression model in (1) is to be
interpreted as the probability that a component succeeds given the
load that is applied
• Since this is a probability we must have that

0≤β1 + β2Load + ui≤1. (2)

• However, there is no guarantee that equation (2) holds unless
additional constraints are imposed
• In particular we might anticipate that very low values of the load
and (respectively very high values of the load) may result in
estimated probabilities being greater than 1 (respectively less than
zero)
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3.4 The linear probability model

• The fitted value of the regression model in (1) is to be
interpreted as the probability that a component succeeds given the
load that is applied
• Since this is a probability we must have that

0≤β1 + β2Load + ui≤1. (3)

• However, there is no guarantee that equation (3) holds unless
additional constraints are imposed
• We can also show that the linear probability model violates two
of the standard regression modelling assumptions

1. Non-normality of the disturbances

2. Heteroscedasticity

• Whilst true these points are a little artificial as anybody
sensible would feel uneasy about estimated probabilities
potentially being either less than 0 or greater than 1!
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3.5 Non-normality of ui

• Since probabilities ≥0 we must have

β1 + β2Load + ui≥0; ui≥− β1 − β2Load

• Since probabilities ≤1 we must have

β1 + β2Load + ui≤1; ui≤1− β1 − β2Load

• The conclusion

−β1 − β2Load≤ui≤1− β1 − β2Load,

shows that ui can only take certain bounded values and so cannot
be normally distributed
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3.6 Non-normality of ui

• Since probabilities ≥0 we must have

β1 + β2Load + ui≥0; ui≥− β1 − β2Load

• Since probabilities ≤1 we must have

β1 + β2Load + ui≤1; ui≤1− β1 − β2Load

• The conclusion

−β1 − β2Load≤ui≤1− β1 − β2Load,

shows that ui can only take certain bounded values
• The bounds depend on the value of the load
• The distribution of the ui and hence the variance of the ui
therefore depend on the value of the load
• Since the variance of the ui depends on the load the model is
heteroscedastic
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3.7 Summary of the linear probability model

• The model is intuitively appealing combining probability
estimates with simple linear regression
• The model has been misguidedly popularised by classic
econometric texts like Gujarati and Porter (2009)
• Whilst the linear probability model may give sensible answers in
the middle of the sample extreme X -values are liable to lead to
probability estimates either less than zero are greater than 1
• To ensure sensible probability estimates that lie between 0 and 1
the logit and probit models should be used
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4.1 Mathematical motivation

• Linear regression

Y = β0 + β1X1 + ...+ βpXP . (4)

• Probability regression

f (Probability of Y ) = β0 + β1X1 + ...+ βpXP . (5)

• Both these equations can take either positive or negative values
depending on the values of x and β
• However, genuine probabilities must lie between 0 and 1
• The function f (·) in equation (5) is known as the link function
• f (·) literally links the regression part of the model to the
probability calculation
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4.2 Problems using regression to estimate probabilities

−
0.

5
0.

0
0.

5
1.

0
1.

5

x

pr
ob

ab
ili

ty

Figure:
Ch 9: Qualitative response regression models



4.3 Fixing regression ...

• Keep the regression bit of the model -– don’t throw the baby out
with the bathwater!

β0 + β1X1 + ...+ βpXP

• Since the above equation takes values in (−∞,∞) we need a
link function f (·) to “squash” equation the equation so that we get
sensible estimates of probabilities

f (π) = β0 + β1X1 + ...+ βpXP

• If done in the right way much of the interpretation stays quite
similar to standard regression
• e.g. if βi > 0 as Xi increases, the probability increases
• e.g. if βi < 0 as Xi increases, the probability decreases
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4.4 Logistic regression

• “Regressing or explaining probabilities”
• How do you squash probabilities to lie between 0 and 1?
• Suppose you have a logistic regression model

ln

(
pi

1− pi

)
= β0 + β1xi

• The probability can be calculated as

pi
1− pi

= exp(β0 + β1xi )

pi = (1− pi ) exp(β0 + β1xi )

pi =
exp(β0 + β1xi )

1 + exp(β0 + β1xi )
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4.5 Probit regression

• “Regressing or explaining probabilities”
• How do you squash probabilities to lie between 0 and 1?
• Suppose you have a probit regression model

Z−1(pi ) = β0 + β1xi ,

where Z−1 denotes the inverse CDF of a normal distribution
• Using Tables the probability can be calculated as

πi = Z (β0 + β1xi ),

where Z (·) denotes the normal distribution value from tables
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4.6 R code for LMs and GLMS

• To fit probability regressions in R you need to be aware of some
background mathematics and the data structure
Background mathematics.
• Technically, speaking logistic and probit regression are examples
of Generalised Linear Models (Bingham and Fry, 2010).
• This means that the R command used is glm for Generalised
Linear Model
• By contrast regression models are known as a Linear Models
(Bingham and Fry, 2010).
• This means that the R command used for regression is lm for
Linear Model
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4.7 R code for GLMs

• In addition to the above you also have to specify the family of
distributions used (binomial) to tell R that you are regressing
probabilities
• You also have to tell R what link function you are using. The
default for binomial generalised linear models is the logit. If you
don’t specify the link function R will fit a logistic regression model
• All these things are essentially bits of R syntax but it is
important to be aware that these do have a mathematical and
statistical origin and underpinning
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4.8 Data structure for probability models in R

• To fit a binomial glm in R you need the data organised in
columns of successes and failures
• The R command needed to do this is cbind which has the effect
of binding the required counts of successes and failures together
• For our data example in R use
tested<-c(50, 70, 100, 60, 40, 85, 90, 50, 80, 65)

failures<-c(10, 17, 30, 21, 18, 43, 54, 33, 60, 51)

successes<-tested-failures
fasteners<-cbind(successes, failures)
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4.9 Fitting binomial generalised linear models in R

• The basic set of commands works as follows
• Compute the model
a.glm< −glm(fasteners∼load, family=binomial)

b.glm< −glm(fasteners∼load,
family=binomial(link=probit))

• Summarise the results
summary(a.glm)

summary(b.glm)

• These models can serve as a cross-check of each other in
applications. Should expect to have similar models giving
you similar interpretations and numerically similar estimates
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5.1 Worked numerical example: Aircraft fasteners

Load Tested Failures

2500 50 10
2700 70 17
2900 100 30
3100 60 21
3300 40 18
3500 85 43
3700 90 54
3900 50 33
4100 80 60
4300 65 51

1. Fit linear probability, logistic and probit models to this data and
interpret the results
2. What load would cause 50% of the components to fail?
3. What is the success probability if loads of 1999kg and 4891kg
are applied?
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5.2 Linear probability model in R

• With the data in the right format you can now fit a linear
probability model using the lm command as follows:
a.lm<-lm(probsuccess∼load)
summary(a.lm)

• Tells the computer to do the work and then summarise the
results in a separate step
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5.3 Binomial GLM in R

• With the data in the right format you can now fit a
binomial glm as follows
a.glm<-glm(fasteners∼load, family=binomial)

summary(a.glm)

b.glm<-glm(fasteners∼load,
family=binomial(link=probit))

summary(b.glm)

• Tells the computer to do the work and then summarise the
results in a separate step
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5.4 Interpretation of results

• All statistical software packages produce redundant information
• For the purposes of this course I could expect you to
calculate a t-statistic
1. Is the variable in question significant?
2. If it is significant if the variable increases does the probability
increase or decrease (is the sign of the random variable positive or
negative?)
• Liable to actually be a lot easier than it might seem at first
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5.5 Linear probability model

Estimate Std. Error t value Pr(>|t|)

(Intercept) 1.692e+00 3.543e-02 47.76 4.08e-11 ***

load -3.460e-04 1.027e-05 -33.68 6.60e-10 ***

• Interpret these results as
1. Load has a significant impact upon the probability of success
p < 6.60×10−10

2. As load increases the probability of success decreases. A 1kg
increase in the load means the success probability decreases by
around 3.46×10−4

• The hand calculation of the z or t-statistic (similar to an
exam-type question) would be

t =
|Estimate|

Standard Error
=

|−3.460×10−4|
1.027×10−5

= 33.69036 > 2.0

Therefore, p < 0.05
• Note here that the two inequality signs point the different
way if you have done this correctly
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5.6 Logistic regression model

Estimate Std. Error z value Pr(>|z|)

(Intercept) 5.3397115 0.5456932 9.785 <2e-16 ***

load -0.0015484 0.0001575 -9.829 <2e-16 ***

• Interpret these results as
1. Load has a significant impact upon the probability of success
p < 2e − 16
2. As load increases the probability of success decreases
• The hand calculation of the z or t-statistic (similar to an
exam-type question) would be

t =
|Estimate|

Standard Error
=

|0.0015484|
0.0001575

= 9.831111 > 2.0

Therefore, p < 0.05
• Note here that the two inequality signs point the different
way if you have done this correctly
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5.7 Extra interpretation

• Since the coefficient of load is negative and statistically
significant, as load increases the probability of success decreases
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5.8 Probit regression model

Coefficients: Estimate Std. Error z value Pr(>|z|)

(Intercept) 3.271e+00 3.213e-01 10.18 <2e-16 ***

load -9.488e-04 9.281e-05 -10.22 <2e-16 ***

• Interpret these results as
1. Load has a significant impact upon the probability of success
p < 2e − 16
2. As load increases the probability of success decreases
• The hand calculation of the t-statistic (similar to an exam-type
question) would be

t =
|Estimate|

Standard Error
=

|−9.488e − 04|
9.281e − 05

= 10.22303631 > 2.0

Therefore, p < 0.05
• Note here that the two inequality signs point the different
way if you have done this correctly
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5.9 Extra interpretation

Exam
• Since the coefficient of load is negative and statistically
significant, as load increases the probability of success decreases
Outside of the exam
• Look for two different sources of information telling you the
same thing (“cross-checks”)
• Always worth cross-checking numerical information like this with
a graph
• Note that the logistic and probit models give you similar answers
in this example and this should always usually be the case
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5.10 Plotting the data as a sanity check

proportion=failed/tested

plot(load, proportion)
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Figure: Suggests the failure rate increases as load increases
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5.11 Extra calculation example I: linear probability model

• For what value of the load is there a 50% failure rate (implies a
50% success rate)?
• From the above the fitted model is

Success probability = 1.692− 3.460×10−4load

• Set

0.5 = 1.692− 3.46×10−4load

load =
0.5− 1.692

−3.46×10−4
= 3445.087
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5.12 Extra calculation example I: Logistic model

• For what value of the load is there a 50% failure rate (implies a
50% success rate)?
Estimate Std. Error z value Pr(>|z|)

(Intercept) 5.3397115 0.5456932 9.785 <2e-16 ***

load -0.0015484 0.0001575 -9.829 <2e-16 ***

• From the output the fitted equation is

ln

(
p

1− p

)
= 5.3397115− 0.0015484× load

• Putting in p = 0.5 gives

0 = 5.3397115− 0.0015484load; load =
5.3397115

0.0015484
= 3448.535kg
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5.13 Extra calculation example I: Probit model

• For what value of the load is there a 50% failure rate (implies a
50% success rate)?
Estimate Std. Error z value Pr(>|z|)

(Intercept) 3.271e+00 3.213e-01 10.18 <2e-16 ***

load -9.488e-04 9.281e-05 -10.22 <2e-16 ***

• From the output the fitted equation is

Z−1(p) = 3.271− 0.0009488× load

• From tables since Z (0) = 0.5, Z−1(0.5) = 0 and so

0 = 3.271− 0.0009488load; load =
3.271

0.0009488
= 3447.513kg
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5.14 Extra calculation example II: linear probability model

• What is the success probability if loads of 1999kg and
4891kg are applied?
• Solution

Probability = 1.692− 3.46×10−4(1999) = 1.000346

Probability = 1.692− 3.46×10−4(4891) = −0.000286

• Do you think these are sensible probability estimates?!
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5.15 Extra calculation example II: logit model

• What is the success probability if loads of 1999kg and
4891kg are applied?

Probability =
exp(5.3397115− (0.0015484)(1999))

1 + exp(5.3397115− (0.0015484)(1999))
= 0.9041716

Probability =
exp(5.3397115− (0.0015484)(4891))

1 + exp(5.3397115− (0.0015484)(4891))
= 0.09678113

• These are more sensible probability estimates!

Ch 9: Qualitative response regression models



5.16 Extra calculation example II: probit model

• What is the success probability if loads of 1999kg and
4891kg are applied?
• In R the function Z−1(·) is calculated using the command
pnorm(·)

Probability = Z−1(3.271− 9.488×10−41999)

= Z−1(1.374349) = 0.9153333

Probability = Z−1(3.271− 9.488×10−44891)

= Z−1(−1.369581) = 0.08540887

• These are again more sensible probability estimates and
should roughly match the values obtained from the logit
model
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5.17 Summary

• The linear probability model is surprisingly popular but not really
a viable model (so don’t use this!)
• The logit and probit model are more viable ways of regressing
and estimating probabilities (so do use these!)
• In our numerical example the linear probability model gives
reasonable probability estimates in the middle of the sample
• The linear probability model is likely to provide poor estimates of
probabilities either close to zero or close to one
• In practical examples would usually expect to see similar
numerical estimates from viable models (e.g. the logit and probit
models here). This gives a sense of robustness to the results
obtained and their interpretation.
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