
Chapter 10: Models for binary dependent variables 
1. The figure below shows three inverse-logit curves on the same set of axes. The 

equations for these curves are 
 

o 𝑃𝑃(𝑌𝑌 = 1) = logit−1(𝑋𝑋) 
 

o 𝑃𝑃(𝑌𝑌 = 1) = logit−1 �1 + 1
2
𝑋𝑋� 

 
o 𝑃𝑃(𝑌𝑌 = 1) = logit−1(−12 + 6𝑋𝑋) 

 

Answer the following: 

o Match each equation to its graphical representation in the plot. 
o For each curve state the intercept and the slope on the log-odds scale. 
o Which curve implies the largest change in probability for a one-unit increase from 

𝑋𝑋 = 0 to 𝑋𝑋 = 1? Briefly explain why. 
 

2. Load the Titanic passenger data used in the chapter, using 
read.csv("titanic.csv"). In this exercise we will extend the analysis presented in 
the chapter to investigate whether the association between age and survival differs 
by passenger class. 



o Before fitting anything, sketch (mentally or on paper) the full set of fixed-
effect coefficients you expect to appear when you add the interaction 
age_centred:passengerClass to the model. How many additional 
coefficients will summary() print? 

o Next, fit the model with the interaction term, and state whether there is 
statistical evidence that the age–survival slope differs between at least two 
passenger classes. – Report the estimated age slope (log-odds per extra 
year) in first class and in third class. 
 
 Translate the third-class slope into an odds ratio for a 10-year age 

difference. 
 Briefly describe, in plain English, how the effect of age on survival 

changes with ticket class. 
 

3. The wells.csv contains data from a study in which researchers measured arsenic 
levels in wells in an area of Bangladesh and indicated whether it was safe to drink1 
or contaminated with arsenic (containing more than 0.5 in units of hundreds of 
micrograms per liter). Households using unsafe wells were encouraged to switch to 
the nearest safe well. Place it in your working directory, then read it into R using 
read.csv("wells.csv"). 

  The data contains these variables 

o switch: 1 = switched, 0 = did not switch 
o dist: distance to the closest safe well (metres) 
o arsenic: arsenic concentration in the current well (×100 µg/L) 
o education: years of schooling of the household head 
o association: participation in local community organisation (as a 0/1 

indicator variable) by any member of the household. 
o Fit a logistic regression with distance as the sole predictor:  

▪ Is dist a statistically significant predictor of switching?  
▪ Report the odds of switching when dist = 100.  
▪ How does that odds change for each additional metre of distance?  
▪ Convert the odds in part 2 to a probability. 

o Refit the model including arsenic level. Does higher arsenic make switching 
more likely? 

 Which of these two households is more likely to have switched wells? 
• Household A has an unsafe well with arsenic level of 1.8, and the 

 
1 This dataset is taken from the excellent book Data Analysis Using Regression and Multilevel/Hierarchical 
Models by Andrew Gelman and Jennifer Hill. Analysis of these data was previously published in Gelman, A., 
Trevisani, M., Lu, H. and Van Geen, A. (2004), ‘Direct Data Manipulation for Local Decision Analysis as 
Applied to the Problem of Arsenic in Drinking Water from Tube Wells in Bangladesh.’ Risk Analysis, 24: 1597-
1612. 



closest safe well is at a distance of 350 metres.  
• Household B has an unsafe well with arsenic level of 0.6, and the 
closest safe well is at 200 metres of distance. 
 

o Extend the model with education and association. Does participation in 
community organisations (association) significantly influence switching? 

 Is education a significant predictor? 
 How does the odds of switching wells changes with each additional 

years of education of the household’s head? 
 Suppose that, based on our model, a certain household C has a 

probability of 0.5 of switching wells. You discover that the head of the 
household actually has two more years of education than recorded. 
Without rerunning the model, update the probability estimate.  
Hint: work on the log-odds scale and then transform back. 
 

4. One long-standing question in decision-making research is how well people exploit 
their internal sense of confidence – the feeling that a just-made choice was 
probably correct – to guide subsequent choices. One approach to study this in the 
lab is the dual-decision task2, in which every trial contains two successive two-
alternative forced-choice (2AFC) decisions: 

Stage Stimulus rule Implication 
Decision 1 Either option is correct with 50% 

probability (chance level). 
Choose whichever option looks 
more likely. 

Decision 2 Which option is correct depends on 
whether Decision 1 was right (if the 
first choice was correct, option A is 
correct; otherwise, option B is). 

Knowing you were right should 
boost accuracy. 

  An optimal decision-maker who perfectly tracks their own correctness should 
therefore be more accurate on Decision 2 than on Decision 1. A subset of the data 
from this study is included in the file dual_decision.csv, which contains three 
columns: 

o accuracy – 1 = correct, 0 = incorrect 
o decision – "1st" / "2nd" 
o id – participant code (26 participants) 

 
• Inspect the data. Load the .csv file and verify the structure and counts for each 

decision stage. 

 
2 Lisi, M., Mongillo, G., Milne, G., Dekker, T. & Gorea, A. (2021) ‘Discrete confidence levels revealed by 
sequential decisions.’ Nature Human Behaviour, 5, 273–280. https://doi.org/10.1038/s41562-020-00953-1 



• Fit a multilevel logistic regression model, predicting accuracy as a function of 
decision. Include both by-participant random intercepts and random slopes. 

• Does accuracy differ between the two stages? Identify the fixed-effect coefficient 
that tests this, and report its estimate, the standard error, 𝑧𝑧-value and 𝑝𝑝-value. 
State whether the null hypothesis (no difference) can be rejected. 

• Exponentiate the decision2nd coefficient to obtain the odds ratio (OR) – the ratio of 
the odds of a correct response on Decision 2 versus Decision 1. Interpret this OR in 
plain language (e.g., ‘participants are x times more likely to be correct on Decision 
2’) and compute a 95 per cent confidence interval around it (e.g. using the method 
illustrated in Chapter 9 for linear multilevel models). 

• Using the fixed-effect estimates, compute the model-predicted probability of a 
correct response for an ‘average’ participant at each stage. Report both 
probabilities and the absolute gain in percentage points. 

• (Optional visual check) For each participant, plot their observed proportion correct 
on Decision 2 (y-axis) against their proportion correct on Decision 1 (x-axis). Add the 
identity line 𝑦𝑦 = 𝑥𝑥. If most points lie above the diagonal, accuracy is indeed higher 
on the second decision. 
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