
Chapter 3: Fitting linear models to data 
1. Load the dataset heights.txt into R as a dataframe called heights_data. 

Assume that heights.txt has been downloaded into your current working 
directory. Use the following command: 

  heights_data <- read.table("heights.txt", header = TRUE) 

  The dataset contains two columns: Mother and Daughter, representing heights 
in inches. 

o Convert the heights from inches to centimetres (1 inch = 2.54 cm). Add 
two new columns to heights_data named Mother_cm and Daughter_cm, 
containing the heights in centimetres. 

2. Create a scatter plot of daughters’ heights against mothers’ heights using the 
measurements in centimetres. Label the axes appropriately. 

o Describe any patterns or relationships you observe in the scatter plot. 
Does the relationship appear to be linear? 

3. Using the measurements in centimetres, fit a linear regression model to predict 
daughters’ heights based on mothers’ heights. Store the model in an object 
called height_model. 

  height_model <- lm(Daughter_cm ~ Mother_cm, data = heights_data) 

o Display the summary of the linear model using the summary() function. 
o Interpret the slope and intercept of the model. What does the slope tell 

you about the relationship between mothers’ and daughters’ heights? Are 
the results statistically significant? 

o Using the coefficients from the model (which you can extract with 
coef(height_model)), calculate by hand the predicted height of a 
daughter whose mother is 170 cm tall. 

o Verify your calculation by using the predict() function: 
  predict(height_model, newdata = data.frame(Mother_cm = 170)) 

4. Add the best-fit line from your linear model to the scatter plot from Exercise 2. 

o Extract the residuals from your model using the residuals() function. 
o Plot a histogram of the residuals. Comment on whether the distribution of 

residuals appears approximately normal. 
o Create a scatter plot of residuals as a function of the predicted values. 

What do you observe in this plot? 
5. Standardize Mother_cm and Daughter_cm by subtracting their mean and dividing 

by their standard deviation. Add two new columns, Mother_std and 
Daughter_std, to heights_data. 

o Fit a new linear regression model predicting Daughter_std from 
Mother_std. Store this model in an object called height_model_std. 



o Display the summary of the standardized model. What is the slope 
coefficient? How does it relate to the Pearson correlation coefficient 
between Mother_cm and Daughter_cm? 

o Calculate the Pearson correlation coefficient using the cor() function, 
and also perform a correlation test using the cor.test() function. Extract 
the correlation coefficient and p-value. 

o Comment on the strength and direction of the relationship. Is the 
correlation statistically significant? How does the correlation coefficient 
relate to the slope in the standardized regression model? 

6. Suppose the results of a visual attention experiment suggest that we can predict 
the average time (in seconds) it takes participants to find a visual target among a 
set of distractors. The data indicate the following: 

o when there are 5 distractors, the predicted response time is 0.4 seconds 
o for each additional distractor, the predicted response time increases by 

approximately 35 milliseconds (i.e., 0.035 seconds) 
o for approximately 95 per cent of participants, the average response time 

falls within ±0.1 seconds of the predicted value. 
 

  Based on this information: 

o Write down the equation of the regression line, where the response time 
is predicted from the number of distractors. 

o What is the residual standard deviation of the regression model (i.e., the 
standard deviation of the residuals)? 

7. Load the dataset wagespeed.csv into R as a dataframe called wagespeed_data, 
assuming it has been downloaded into your working directory: 

  wagespeed_data <- read.csv("wagespeed.csv") 

  This dataset contains measurements of the average walking speed (wspeed) of 
passers-by in major cities around the world, and a normalized hourly wage 
(wage) based on New York City (wage = 100). The theory is that people walk faster 
when the cost of their time is higher. 

o Fit a linear regression model predicting walking speed (wspeed) from 
wage. Store the model in an object called wage_model. 

o Create a scatter plot of walking speed against wage, and add the 
regression line. 

o Using the coefficients of the model, compute the expected walking speed 
in a hypothetical city where the average wage is two-thirds that of New 
York City (i.e., wage = 66.67). 

o Create a histogram of the residuals from the model. Save the residuals 
into a variable called wspeed_residuals: 

  wspeed_residuals <- residuals(wage_model) 
o Use a quantile-quantile (QQ) plot to assess whether the residuals are 

approximately normally distributed: 



  qqnorm(wspeed_residuals) 
qqline(wspeed_residuals) 

  Recall from Chapter 2 that a quantile divides data into intervals of equal 
probability. In a normal QQ plot, if the points lie along the line, this 
suggests that the distribution is approximately normal (i.e. the quantiles 
are approximately at the same distance from the mean as in a normal 
distribution). Deviations from the line – particularly at the edges (the most 
extreme quantiles) – can indicate departures from normality. Look 
especially at the points far from the centre of the distribution: do they 
tend to fall above or below the line? Do both ends behave similarly? Or is 
there more deviation on one side than the other? 

8. Write a brief report summarizing your findings from the regression analyses on 
both the heights_data and wagespeed_data datasets. Follow APA style 
guidelines for reporting statistical results. 

o Include the scatter plots with best-fit lines as figures in your report. 
Reference the figures appropriately in your text. 

o Summarize and interpret the regression coefficients, confidence 
intervals, and key findings for each model. 

o Reflect on the relationship between wage and walking speed. Can you 
think of any other factors – besides the economic cost of time – that 
might influence how fast people walk in different cities? 
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